Barijum-karbonat
Barijum-karbonat | |||
---|---|---|---|
Drugi nazivi | viterit | ||
Identifikacija | |||
CAS registarski broj | 513-77-9 | ||
PubChem[1][2] | 10563 | ||
ChemSpider[3] | 10121 | ||
UNII | 6P669D8HQ8 | ||
MeSH | |||
Jmol-3D slike | Slika 1 | ||
| |||
| |||
Svojstva | |||
Molekulska formula | BaCO3 | ||
Molarna masa | 197.336 g/mol | ||
Agregatno stanje | beli kristal | ||
Gustina | 4.2865 g/cm3, osnovno | ||
Tačka topljenja |
811 °C | ||
Tačka ključanja |
1555 °C | ||
| |||
Infobox references |
Barijum-karbonat je neorgansko hemijsko jedinjenje hemijske formule BaCO3.
Javlja se u prirodi u vidu minerala viterita, ali se može dobiti industrijskim putem iz barita.[4]
Mineral viterit je nazvan prema Viljemu Viteritu koji je 1784. utvrdio da je hemijski različit od barijum-sulfata. Viterit kristališe u ortorombičnom kristalnom sistemu.[4]
To je beo prah, koji podseća na kredu. Nerastvoran je u vodi, mada se u maloj meri rastvara u prisustvu viška ugljen-dioksida. Reaguje sa kiselinama dajući rastvorljive barijumove soli[4]:
- BaCO3(s) + 2 HCl(aq) → BaCl2(aq) + CO2(g) + H2O(l)
Sa sumpornom kiselinom slabo reaguje.[4]
Osobina | Vrednost |
---|---|
Particioni koeficijent[5] (ALogP) | -2,0 |
Rastvorljivost[6] (logS, log(mol/L)) | 1,3 |
Polarna površina[7] (PSA, Å2) | 153,4 |
Upotrebljava se za spravljanje otrova za pacove, keramike i cementa.[4]
- ↑ Li Q, Cheng T, Wang Y, Bryant SH (2010). „PubChem as a public resource for drug discovery.”. Drug Discov Today 15 (23-24): 1052-7. DOI:10.1016/j.drudis.2010.10.003. PMID 20970519.
- ↑ Evan E. Bolton, Yanli Wang, Paul A. Thiessen, Stephen H. Bryant (2008). „Chapter 12 PubChem: Integrated Platform of Small Molecules and Biological Activities”. Annual Reports in Computational Chemistry 4: 217-241. DOI:10.1016/S1574-1400(08)00012-1.
- ↑ Hettne KM, Williams AJ, van Mulligen EM, Kleinjans J, Tkachenko V, Kors JA. (2010). „Automatic vs. manual curation of a multi-source chemical dictionary: the impact on text mining”. J Cheminform 2 (1): 3. DOI:10.1186/1758-2946-2-3. PMID 20331846.
- ↑ 4,0 4,1 4,2 4,3 4,4 Parkes, G. D. & Fil, D. 1973. Melorova moderna neorganska hemija. Naučna knjiga. Beograd.
- ↑ Ghose, A.K., Viswanadhan V.N., and Wendoloski, J.J. (1998). „Prediction of Hydrophobic (Lipophilic) Properties of Small Organic Molecules Using Fragment Methods: An Analysis of AlogP and CLogP Methods”. J. Phys. Chem. A 102: 3762-3772. DOI:10.1021/jp980230o.
- ↑ Tetko IV, Tanchuk VY, Kasheva TN, Villa AE. (2001). „Estimation of Aqueous Solubility of Chemical Compounds Using E-State Indices”. Chem Inf. Comput. Sci. 41: 1488-1493. DOI:10.1021/ci000392t. PMID 11749573.
- ↑ Ertl P., Rohde B., Selzer P. (2000). „Fast calculation of molecular polar surface area as a sum of fragment based contributions and its application to the prediction of drug transport properties”. J. Med. Chem. 43: 3714-3717. DOI:10.1021/jm000942e. PMID 11020286.
- Clayden Jonathan, Nick Greeves, Stuart Warren, Peter Wothers (2001). Organic chemistry. Oxford, Oxfordshire: Oxford University Press. ISBN 0-19-850346-6.
- Smith, Michael B.; March, Jerry (2007). Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (6th izd.). New York: Wiley-Interscience. ISBN 0-471-72091-7.
- Katritzky A.R., Pozharskii A.F. (2000). Handbook of Heterocyclic Chemistry. Academic Press. ISBN 0080429882.