Bas (topologi)
En bas B för en topologi T på en mängd X är en samling av element i T sådan att varje element i T är en union av ett godtyckligt antal element i B. Man säger att basen genererar topologin.
Definition och egenskaper
[redigera | redigera wikitext]Om X är en mängd så är en samling B av delmängder till X en bas för en topologi om
- Unionen av alla element i B är X.
- Om , så ska det, för alla , finnas så att och .
Om en samling av delmängder inte uppfyller båda villkoren så är den inte en bas för någon topologi på X (den är dock en underbas). Om en samling av delmängder är en bas så definierar den en unik topologi på X. Denna topologi kallas toppologin genererad av B. Baser är vanliga vid konstruktionen av topologier, exempelvis är den metriska topologin vanligtvis genererad via en bas.
Två baser sägs vara ekvivalenta baser om de definierar samma topologi. Två baser och är ekvivalenta om och endast om det för varje p i varje finns ett så att , och vice versa.
Exempel
[redigera | redigera wikitext]Mängden bildar en bas för . Här är
där är den euklidiska normen.
Referenser
[redigera | redigera wikitext]- Hocking, John G.; Gail S. Young (1961). Topology. Dover Pulications. ISBN 0-486-65676-4