(Translated by https://www.hiragana.jp/)
What is Thundersnow and Why Does It Happen? - weather.com
The Wayback Machine - https://web.archive.org/web/20141117105440/http://www.weather.com/news/science/what-thundersnow-and-why-does-it-happen-20140218

What is Thundersnow and Why Does It Happen?

By Dr. Greg Forbes Published: Feb 18, 2014, 11:03 AM EST weather.com

  • Infamous Thundersnow!Infamous Thundersnow!
  • Thundersnow on the Mountain!Thundersnow on the Mountain!
  • RAW: Snow Scenes Across U.S.RAW: Snow Scenes Across U.S.
  • Cold Blast This WeekCold Blast This Week
  • Will You Be Hit By Lake Effect Snow?Will You Be Hit By Lake Effect Snow?
  • Bitter Cold Temperatures Sweep NationBitter Cold Temperatures Sweep Nation
  • How Lake Effect Snow WorksHow Lake Effect Snow Works
  • Winter Weather Plunges Nation into Deep FreezeWinter Weather Plunges Nation into Deep Freeze
  • How Long Will the Cold Last?How Long Will the Cold Last?
  • Look Who Saw Three Feet of Snow!Look Who Saw Three Feet of Snow!
  • High Wind Warnings for Pacific NorthwestHigh Wind Warnings for Pacific Northwest
  • Caught on Cam: Cars Spinning Out of ControlCaught on Cam: Cars Spinning Out of Control
  • Arctic Blast Heads South Arctic Blast Heads South
  • What Caused A Colorado Dust Storm?What Caused A Colorado Dust Storm?
  • 5 Cities Least Prepared for Winter  5 Cities Least Prepared for Winter
  • This Year's Winter Weather ForecastThis Year's Winter Weather Forecast
  • Are Any Two Snowflakes Identical?Are Any Two Snowflakes Identical?
  • What is Lake Effect Snow?What is Lake Effect Snow?
  • Can Wooly Worms Predict the Winter?Can Wooly Worms Predict the Winter?
  • Earliest Snow Fall Earliest Snow Fall
  • 400 Died in 1888 NE Blizzard400 Died in 1888 NE Blizzard
  • Keeps Your Pipes from FreezingKeeps Your Pipes from Freezing
  • Storm Name Criticism ResponseStorm Name Criticism Response
  • The Science Behind Snow MeltThe Science Behind Snow Melt
  • Snow Chasers Chase Lake Effect SnowSnow Chasers Chase Lake Effect Snow
  • The Mystery of Lake Effect Snow The Mystery of Lake Effect Snow
  • Avoid the Flu at HomeAvoid the Flu at Home
  • What is an Alberta Clipper?What is an Alberta Clipper?
  • The Phenomenon That Made THESEThe Phenomenon That Made THESE
  • Who Says You Can't Climb a Waterfall?Who Says You Can't Climb a Waterfall?
  • Winter Car Survival KitWinter Car Survival Kit
  • Driving Tips in the WinterDriving Tips in the Winter
  • Save Money This WinterSave Money This Winter

Thundersnow is a snowstorm event in which thunder and lightning occur. An example is the classic 2011 thundersnow in Chicago that surprised Jim Cantore.

Thunderstorms accompanied by snow are usually of a different character than the "normal" thunderstorm. The latter are usually rather tall, narrow storms containing a rising updraft of warm, moist air that has risen in a layer from near the surface that may go upward to 40,000 feet or more. Temperatures at the surface are usually well above freezing.

Snowstorms, by contrast, are mostly associated with rather extensive layers of flat, relatively shallow cloud. Precipitation in the clouds is usually formed below 20,000 feet, as sketched in the first diagram on the right. Upward and downward motions in ordinary snowstorms are rather gentle. The exception is lake-effect snow, where the clouds are created by heating of air moving over relatively warm lakes. Lake effect snowstorms have narrow clouds shaped more like ordinary thunderstorms, and actually sometimes develop thunder and lightning.

Thundersnow 1

Most thundersnow events develop when "ordinary" flat, layered snow clouds develop upward bumps or "turrets", as illustrated in the second diagram. They rise upward above the rest of the flat snow cloud by about 5,000 feet. These turrets can develop when there is some strong lifting mechanism around the 20,000 foot level, such as an approaching strong mid- and upper-level trough. Winds with the upper trough bring in colder air aloft, and the lifting also cools the layer. Air cools as it rises.

Thundersnow 2

When the air above the initial cloud layer is relatively cool and dry, and when the added cooling and lifting is strong, a shallow layer just above the original flat cloud can become unstable. This makes it favorable for "elevated convection" – showers or thunderstorms. The rising turret is the result, containing vigorous upward and also some downward motions. There is usually more than one turret that forms in these conditions. There can be bands or a checkerboard pattern of turrets present.

When the unstable layer develops where the temperature is about -10 to -20 degrees Celsius (+14 to -4 degrees Fahrenheit), conditions are favorable for both snowflakes and small hailstones (called graupel) to form. As these different particles interact, electrical charges can develop. It's a similar process to developing static electricity when you slide your leather shoes across a wool rug. Stick out a pointing finger and watch the spark fly when you touch a metal object or another person! In the cloud case, that spark is lightning. Sometimes it's cloud-to-ground (as depicted in the third diagram) and often it's quasi-horizontal within the cloud.

Thundersnow 3

That deeper cloud creates a deeper layer in which snow can form, and those stronger upward motions inside the cloud turret can condense snowflakes from the rising moist air at very high rates. So the same process that creates the electrification can also create a burst of heavy snow and sometimes small hail pellets (graupel) resembling sleet.

Thundersnow develops when the air is below freezing near the ground, and unlike most summer thunderstorms, it isn't near-ground air that rises all the way into the tall thunderstorm top. The instability is in only a shallow layer aloft. In thundersnow, the "action" mainly takes place in a rather shallow layer that is usually near 20,000 feet and only around 5,000 feet thick.

In the case of the Chicago thundersnow, a colleague (Tom Warner) tells me that most of the lightning bolts went upward between the tall buildings and the charge centers inside the cloud turrets.

MORE ON WEATHER.COM: Stunning Thunderstorm Photos

Lightning strikes over Poole Harbour during a thunderstorm on July 21, 2013, in Poole, England. (Dan Kitwood/Getty Images)


Share Your Comment