(Translated by https://www.hiragana.jp/)
Helical microtubules of graphitic carbon
The Wayback Machine - https://web.archive.org/web/20170713091406/http://www.nature.com:80/nature/journal/v354/n6348/abs/354056a0.html
Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Thursday 13 July 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 354, 56 - 58 (07 November 1991); doi:10.1038/354056a0

Helical microtubules of graphitic carbon

Sumio Iijima

NEC Corporation, Fundamental Research Laboratories, 34 Miyukigaoka, Tsukuba, Ibaraki 305, Japan

THE synthesis of molecular carbon structures in the form of C60 and other fullerenes1 has stimulated intense interest in the structures accessible to graphitic carbon sheets. Here I report the preparation of a new type of finite carbon structure consisting of needle-like tubes. Produced using an arc-discharge evaporation method similar to that used for fullerene synthesis, the needles grow at the negative end of the electrode used for the arc discharge. Electron microscopy reveals that each needle comprises coaxial tubes of graphitic sheets, ranging in number from 2 up to about 50. On each tube the carbon-atom hexagons are arranged in a helical fashion about the needle axis. The helical pitch varies from needle to needle and from tube to tube within a single needle. It appears that this helical structure may aid the growth process. The formation of these needles, ranging from a few to a few tens of nanometres in diameter, suggests that engineering of carbon structures should be possible on scales considerably greater than those relevant to the fullerenes.

------------------

References
1. Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F. & Smalley, R. E. Nature 318, 162−163 (1985). | Article | ISI | ChemPort |
2. Oberlin, A. & M. Endo J. Cryst. Growth 32, 335−349 (1976). | Article | ChemPort |
3. Speck, J. S., Endo, M. & Dresselhaus, M. S. J. Cryst. Growth 94, 834−848 (1989). | Article | ChemPort |
4. Tibbetts, G. G. J. Cryst. Growth 66, 632−638 (1984). | Article | ISI | ChemPort |
5. Bacon, R. J. appl. Phys. 31, 283−290 (1960). | Article | ISI |
6. Iijima, S. J. Cryst. Growth 50, 675−683 (1980). | Article | ChemPort |
7. Iijima, S. J. phys. Chem. 91, 3466−3467 (1987). | Article | ChemPort |
8. Kroto, H. W. Science 242, 1139−1145 (1988). | ISI | ChemPort |
9. Krätschmer, W., Lamb, L. D., Fostiropoulos, K. & Huffman, D. R. Nature 347, 354−358 (1990). | Article | ISI | ChemPort |
10. Whittaker, E. J. W. Acta Cryst. 21, 461−466 (1966). | Article | ChemPort |
11. Saito, S. & Oshiyama, A. Phys. Rev. Lett. 66, 2637−2640 (1991). | Article | PubMed | ChemPort |



© 1991 Nature Publishing Group
Privacy Policy