(Translated by https://www.hiragana.jp/)
Metabolic myopathies: a clinical approach; part I - Pediatric Neurology
The Wayback Machine - https://web.archive.org/web/20230403183821/https://www.pedneur.com/article/S0887-8994(99)00133-2/fulltext
Advertisement
Review Article| Volume 22, ISSUE 2, P87-97, February 2000

Download started.

Ok

Metabolic myopathies: a clinical approach; part I

  • Basil T. Darras
    Correspondence
    Communications should be addressed to: Dr. Darras; Director, Neuromuscular Program; Neurology Department; Fegan 11; Children’s Hospital; 300 Longwood Avenue; Boston, MA 02115
    Affiliations
    Neuromuscular Program; Department of Neurology; Children’s Hospital; Boston, Massachusetts, USA

    Department of Neurology (Pediatrics); Harvard Medical School; Boston, Massachusetts, USA
    Search for articles by this author
  • Neil R. Friedman
    Affiliations
    Department of Neurology; Children’s Hospital; Boston, Massachusetts, USA
    Search for articles by this author

      Abstract

      Children and adults with metabolic myopathies have underlying deficiencies of energy production, which may result in dysfunction of muscle or other energy-dependent tissues, or both. Patients with disorders of glycogen, lipid, or mitochondrial metabolism in muscle may present with dynamic findings (i.e., exercise intolerance, reversible weakness, and myoglobinuria) or progressive muscle weakness, or both. In this first part of the review, we present a brief description of energy metabolism in muscle, a simplified overview of the clinical and laboratory evaluation of the patient with suspected metabolic myopathy, and a diagnostic algorithm aimed at predicting the nature of the underlying biochemical abnormality. The goal is to simplify a complex field of neuromuscular disease and thus lead to early recognition and treatment of these disorders.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D; use, select 'Corporate R&D; Professionals'

      Subscribe:

      Subscribe to Pediatric Neurology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Tein I.
        • DiMauro S.
        • De Vivo D.
        Recurrent childhood myoglobinuria.
        Adv Pediatr. 1990; 37: 77-117
        • Tonin P.
        • Lewis P.
        • Servidei S.
        • DiMauro S.
        Metabolic causes of myoglobinuria.
        Ann Neurol. 1990; 27: 181-185
        • Felig P.
        • Wahren J.
        Fuel homeostasis in exercise.
        N Engl J Med. 1975; 293: 1078-1084
        • Wahren J.
        Glucose turnover during exercise in man.
        Ann N Y Acad Sci. 1977; 301: 45-55
        • Essen B.
        Intramuscular substrate utilization during prolonged exercise.
        Ann N Y Acad Sci. 1977; 301: 30-44
        • DiMauro S.
        • Tsujino S.
        Nonlysosomal glycogenoses.
        in: Engel A. Banker B. Myology. McGraw-Hill, New York1994: 1554-1576
        • DiMauro S.
        • Tonin P.
        • Servidei S.
        Metabolic myopathies.
        in: Rowland L. DiMauro S. Handbook of clinical neurology. Elsevier, Amsterdam1992: 479-526
        • DiMauro S.
        • Miranda A.F.
        • Sakoda S.
        • et al.
        Metabolic myopathies.
        Am J Med Genet. 1986; 25: 635-651
        • Lewis S.
        • Haller R.
        The pathophysiology of McArdle’s disease.
        J Appl Physiol. 1986; 61: 391-401
        • Lewis S.
        • Vora S.
        • Haller R.
        Abnormal oxidative metabolism and O2 transport in muscle phosphofructokinase deficiency.
        J Appl Physiol. 1991; 70: 391-398
        • Fishbein W.
        Myoadenylate deaminase deficiency.
        Biochem Med. 1985; 33: 158-169
      1. Tein I. Fatty acid oxidation and associated defects. American Academy of Neurology. Madison, WI: Omnipress, 1995:9–38.

        • Tein I.
        Metabolic myopathies.
        Semin Pediatr Neurol. 1996; 3: 59-98
        • Hashimoto T.
        Peroxisomal and mitochondrial enzymes.
        in: Coates P. Tanaka K. Progress in clinical and biological research New developments in fatty acid oxidation. Wiley-Liss, New York1992: 19-32
        • Luo M.J.
        • He X.Y.
        • Sprecher H.
        • Schulz H.
        Purification and characterization of the trifunctional beta-oxidation complex from pig heart mitochondria.
        Arch Biochem Biophys. 1993; 304: 266-271
        • Bjorkhem I.
        • Danielsson H.
        Omega- and (omega-1)-oxidation of fatty acids by rat liver microsomes.
        Eur J Biochem. 1970; 17: 450-459
        • Krahling J.B.
        • Gee R.
        • Murphy P.A.
        • Kirk J.R.
        • Tolbert N.E.
        Comparison of fatty acid oxidation in mitochondria and peroxisomes from rat liver.
        Biochem Biophys Res Commun. 1978; 82: 136-141
        • Kolvraa S.
        • Gregersen N.
        Acyl-CoA.
        Biochem Med Metab Biol. 1986; 36: 98-105
        • Roe C.R.
        • Millington D.S.
        • Maltby D.A.
        • Bohan T.P.
        • Kahler S.G.
        • Chalmers R.A.
        Diagnostic and therapeutic implications of medium-chain acylcarnitines in the medium-chain acyl-CoA dehydrogenase deficiency.
        Pediatr Res. 1985; 19: 459-466
        • Baretz B.
        • Ramsdell H.
        • Tanaka K.
        Identification of n-hexanoylglycine in urines from two patients with Jamaican vomiting sickness.
        Clin Chim Acta. 1976; 73: 199-202
        • Millington D.
        New methods for the analysis of acylcarnitines and acyl-coenzyme A compounds.
        in: Gaskell S. Mass spectrometry in biomedical research. John Wiley, New York1986: 97-114
        • DiMauro S.
        • De Vivo D.C.
        Diseases of carbohydrate, fatty acid, and mitochondrial metabolism.
        in: Siegel G.J. Agranoff B.W. Albers R.W. Molinoff P.B. Basic neurochemistry. 4th ed. Raven Press, New York1989: 647-670
        • Gollnick P.
        • Piehl K.
        • Saltin B.
        Selective glycogen depletion pattern in human muscle fibres after exercise of varying intensity and at varying pedalling rates.
        J Physiol (Lond). 1974; 241: 45-57
        • Essen B.
        Glycogen depletion of different types in human skeletal muscle during intermittent and continuous exercise.
        Acta Physiol Scand. 1978; 103: 446-455
        • Lithell H.
        • Orlander J.
        • Schele R.
        • Sjodin B.
        • Karlsson J.
        Changes in lipoprotein-lipase activity and lipid stores in human skeletal muscle with prolonged heavy exercise.
        Acta Physiol Scand. 1979; 107: 257-261
        • DiMauro S.
        • Bruno C.
        Glycogen storage diseases of muscle.
        Curr Opin Neurol. 1998; 11: 477-484
        • DiMauro S.
        • Bresolin N.
        Phosphorylase deficiency.
        in: Engel A. Banker B. Myology. McGraw-Hill, New York1986: 1585-1601
        • Bell A.
        • Thompson G.
        Free fatty acid oxidation in bovine muscle in vivo.
        Am J Physiol. 1979; 237: E309-E315
        • Hale D.
        • Bennett M.
        Fatty acid oxidation disorders.
        J Pediatr. 1992; 121: 1-11
        • Tein I.
        • De Vivo D.C.
        • Bierman F.
        • et al.
        Impaired skin fibroblast carnitine uptake in primary systemic carnitine deficiency manifested by childhood carnitine-responsive cardiomyopathy.
        Pediatr Res. 1990; 28: 247-255
        • Stanley C.A.
        • DeLeeuw S.
        • Coates P.M.
        • et al.
        Chronic cardiomyopathy and weakness or acute coma in children with a defect in carnitine uptake.
        Ann Neurol. 1991; 30: 709-716
        • Vockley J.
        The changing face of disorders of fatty acid oxidation.
        Mayo Clin Proc. 1994; 69 ([review]): 249-257
        • Tein I.
        • DiMauro S.
        • Rowland L.
        Myoglobinuria.
        in: Rowland L. DiMauro S. Handbook of clinical neurology. Elsevier, Amsterdam1992: 553-593
        • Griggs R.
        • Mendell J.
        • Miller R.
        Metabolic myopathies.
        in: Griggs R. Mendell J. Miller R. Evaluation and treatment of myopathies. F.A. Davis, Philadelphia1995: 247-293
        • Mortensen P.
        • Gregersen N.
        The biological origin of ketotic dicarboxylic aciduria. II. In vivo and in vitro investigations of the βべーた-oxidation of the C8-C16-dicarboxylic acids in unstarved, starved and diabetic rats.
        Biochim Biophys Acta. 1982; 710: 477-484
        • Argov Z.
        • Bank W.J.
        • Boden B.
        • Ro Y.I.
        • Chance B.
        Phosphorus magnetic resonance spectroscopy of partially blocked muscle glycolysis. An in vivo study of phosphoglycerate mutase deficiency.
        Arch Neurol. 1987; 44: 614-617
        • Matthews P.M.
        • Allaire C.
        • Shoubridge E.A.
        • Karpati G.
        • Carpenter S.
        • Arnold D.L.
        In vivo muscle magnetic resonance spectroscopy in the clinical investigation of mitochondrial disease.
        Neurology. 1991; 41: 114-120