Pulsed Electromagnetic Fields (PEMF)—Physiological Response and Its Potential in Trauma Treatment
Abstract
:1. Introduction
2. Technology
2.1. Magnetic Field
2.2. Electrical Field
2.3. Tissue Interaction
2.4. Technology Comparison
2.5. Study Design
2.6. Safety and Adverse Effects
3. Cellular and Molecular Response to PEMF
3.1. Direct Cellular Response to PEMF
3.1.1. Ion Channels
3.1.2. Adenosine and its Receptors
3.2. Essential Cellular Processes and PEMF
3.2.1. Apoptosis
3.2.2. Proliferation
Effects in Osteoblasts and MSCs
Effects in Other Cell Types
3.2.3. Differentiation
Effects in MSC, Osteoblasts, and Cartilage
Effects in Other Cell Types
3.3. Concluding Cellular and Molecular Response Effects of PEMF
4. PEMF Effects in the Clinic
4.1. Orthopedics
4.2. Osteoarthritis
4.3. Osteopenia
4.4. Neurology
4.5. Wound Healing
4.6. Oncology
4.7. Concluding Remarks Regarding Clinical Applications
5. Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Cadossi, R.; Massari, L.; Racine-Avila, J.; Aaron, R.K. Pulsed Electromagnetic Field Stimulation of Bone Healing and Joint Preservation: Cellular Mechanisms of Skeletal Response. J. Am. Acad. Orthop. Surg. Glob. Res. Rev. 2020, 4, e1900155. [Google Scholar] [CrossRef]
- Veldhuizen, I.; Theelen, H.; Ottenhof, M.; van der Hulst, R.; Hoogbergen, M. How to Reconstruct a Complex Multiunit Skin Defect: A Single-case Survey Study. J. Dermatol. Skin. Sci. 2021, 3, 49–51. [Google Scholar]
- Chen, J.H.; Liu, C.; You, L.; Simmons, C.A. Boning up on Wolff’s Law: Mechanical regulation of the cells that make and maintain bone. J. Biomech. 2010, 43, 108–118. [Google Scholar] [CrossRef]
- Yuan, J.; Xin, F.; Jiang, W. Underlying Signaling Pathways and Therapeutic Applications of Pulsed Electromagnetic Fields in Bone Repair. Cell Physiol. Biochem. 2018, 46, 1581–1594. [Google Scholar] [CrossRef]
- Fukada, E.; Yasuda, I. On the Piezoelectric Effect of Bone. J. Phys. Soc. Jpn. 1957, 12, 1158–1162. [Google Scholar] [CrossRef]
- Reinish, G.B. Piezoelectric properties of bone as functions of moisture content. Nature 1975, 253, 626–627. [Google Scholar] [CrossRef]
- Jacob, J.; More, N.; Kalia, K.; Kapusetti, G. Piezoelectric smart biomaterials for bone and cartilage tissue engineering. Inflamm. Regen. 2018, 38, 2. [Google Scholar] [CrossRef] [Green Version]
- Shamos, M.H.; Lavine, L.S. Piezoelectricity as a fundamental property of biological tissues. Nature 1967, 213, 267–269. [Google Scholar] [CrossRef]
- Bassett, C.A.; Pilla, A.A.; Pawluk, R.J. A non-operative salvage of surgically-resistant pseudarthroses and non-unions by pulsing electromagnetic fields. A preliminary report. Clin. Orthop. Relat. Res. 1977, 124, 128–143. [Google Scholar]
- Funk, R.H.W.; Fahnle, M. A short review on the influence of magnetic fields on neurological diseases. Front. Biosci. (Sch. Ed.) 2021, 13, 181–189. [Google Scholar] [CrossRef]
- Strauch, B.; Herman, C.; Dabb, R.; Ignarro, L.J.; Pilla, A.A. Evidence-based use of pulsed electromagnetic field therapy in clinical plastic surgery. Aesthet. Surg. J. 2009, 29, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Barati, M.; Darvishi, B.; Javidi, M.A.; Mohammadian, A.; Shariatpanahi, S.P.; Eisavand, M.R.; Madjid Ansari, A. Cellular stress response to extremely low-frequency electromagnetic fields (ELF-EMF): An explanation for controversial effects of ELF-EMF on apoptosis. Cell Prolif. 2021, 54, e13154. [Google Scholar] [CrossRef]
- Bhavsar, M.B.; Han, Z.; DeCoster, T.; Leppik, L.; Costa Oliveira, K.M.; Barker, J.H. Electrical stimulation-based bone fracture treatment, if it works so well why do not more surgeons use it? Eur. J. Trauma. Emerg. Surg. 2020, 46, 245–264. [Google Scholar] [CrossRef]
- Caliogna, L.; Medetti, M.; Bina, V.; Brancato, A.M.; Castelli, A.; Jannelli, E.; Ivone, A.; Gastaldi, G.; Annunziata, S.; Mosconi, M.; et al. Pulsed Electromagnetic Fields in Bone Healing: Molecular Pathways and Clinical Applications. Int. J. Mol. Sci. 2021, 22, 7403. [Google Scholar] [CrossRef]
- Capone, F.; Salati, S.; Vincenzi, F.; Liberti, M.; Aicardi, G.; Apollonio, F.; Varani, K.; Cadossi, R.; Di Lazzaro, V. Pulsed Electromagnetic Fields: A Novel Attractive Therapeutic Opportunity for Neuroprotection after Acute Cerebral Ischemia. Neuromodulation 2022, 25, 1240–1247. [Google Scholar] [CrossRef]
- Cecoro, G.; Bencivenga, D.; Annunziata, M.; Cennamo, N.; Della Ragione, F.; Formisano, A.; Piccirillo, A.; Stampone, E.; Volpe, P.A.; Zeni, L.; et al. Effects of Magnetic Stimulation on Dental Implant Osseointegration: A Scoping Review. Appl. Sci. 2022, 12, 4496. [Google Scholar] [CrossRef]
- Chalidis, B.; Sachinis, N.; Assiotis, A.; Maccauro, G. Stimulation of bone formation and fracture healing with pulsed electromagnetic fields: Biologic responses and clinical implications. Int. J. Immunopathol. Pharmacol. 2011, 24, 17–20. [Google Scholar] [CrossRef]
- Chen, L.; Duan, X.; Xing, F.; Liu, G.; Gong, M.; Li, L.; Chen, R.; Xiang, Z. Effects of pulsed electromagnetic field therapy on pain, stiffness and physical function in patients with knee osteoarthritis: A systematic review and meta-analysis of randomized controlled trials. J. Rehabil. Med. 2019, 51, 821–827. [Google Scholar] [CrossRef] [Green Version]
- Daish, C.; Blanchard, R.; Fox, K.; Pivonka, P.; Pirogova, E. The Application of Pulsed Electromagnetic Fields (PEMFs) for Bone Fracture Repair: Past and Perspective Findings. Ann. Biomed. Eng. 2018, 46, 525–542. [Google Scholar] [CrossRef]
- Di Bartolomeo, M.; Cavani, F.; Pellacani, A.; Grande, A.; Salvatori, R.; Chiarini, L.; Nocini, R.; Anesi, A. Pulsed Electro-Magnetic Field (PEMF) Effect on Bone Healing in Animal Models: A Review of Its Efficacy Related to Different Type of Damage. Biology 2022, 11, 402. [Google Scholar] [CrossRef]
- Ganesan, K.; Gengadharan, A.C.; Balachandran, C.; Manohar, B.M.; Puvanakrishnan, R. Low frequency pulsed electromagnetic field—A viable alternative therapy for arthritis. Indian. J. Exp. Biol. 2009, 47, 939–948. [Google Scholar] [PubMed]
- Giorgi, G.; Del Re, B. Epigenetic dysregulation in various types of cells exposed to extremely low-frequency magnetic fields. Cell Tissue Res. 2021, 386, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Gossling, H.R.; Bernstein, R.A.; Abbott, J. Treatment of ununited tibial fractures: A comparison of surgery and pulsed electromagnetic fields (PEMF). Orthopedics 1992, 15, 711–719. [Google Scholar] [CrossRef]
- Gualdi, G.; Costantini, E.; Reale, M.; Amerio, P. Wound Repair and Extremely Low Frequency-Electromagnetic Field: Insight from In Vitro Study and Potential Clinical Application. Int. J. Mol. Sci. 2021, 22, 5037. [Google Scholar] [CrossRef]
- Hannemann, P.F.; Mommers, E.H.; Schots, J.P.; Brink, P.R.; Poeze, M. The effects of low-intensity pulsed ultrasound and pulsed electromagnetic fields bone growth stimulation in acute fractures: A systematic review and meta-analysis of randomized controlled trials. Arch. Orthop. Trauma. Surg. 2014, 134, 1093–1106. [Google Scholar] [CrossRef]
- Khan, M.; Faisal, M.; Ahmad, L. Biophysical therapy using the pulsating electromagnetic field as adjunctive therapy for implant osseointegration—A review. Natl. J. Maxillofac. Surg. 2022, 13, S11–S18. [Google Scholar] [CrossRef]
- Mansourian, M.; Shanei, A. Evaluation of Pulsed Electromagnetic Field Effects: A Systematic Review and Meta-Analysis on Highlights of Two Decades of Research In Vitro Studies. Biomed. Res. Int. 2021, 2021, 6647497. [Google Scholar] [CrossRef]
- Markov, M.; Nindl, G.; Hazlewood, C.; Cuppen, J. Interactions between Electromagnetic Fields and Immune System: Possible Mechanism for Pain Control. In Bioelectromagnetics Current Concepts; Ayrapetyan, S.N., Markov, M.S., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 213–225. [Google Scholar]
- Markovic, L.; Wagner, B.; Crevenna, R. Effects of pulsed electromagnetic field therapy on outcomes associated with osteoarthritis: A systematic review of systematic reviews. Wien. Klin. Wochenschr. 2022, 134, 425–433. [Google Scholar] [CrossRef]
- Massari, L.; Benazzo, F.; Falez, F.; Perugia, D.; Pietrogrande, L.; Setti, S.; Osti, R.; Vaienti, E.; Ruosi, C.; Cadossi, R. Biophysical stimulation of bone and cartilage: State of the art and future perspectives. Int. Orthop. 2019, 43, 539–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Letizia Mauro, G.; Scaturro, D.; Gimigliano, F.; Paoletta, M.; Liguori, S.; Toro, G.; Iolascon, G.; Moretti, A. Physical Agent Modalities in Early Osteoarthritis: A Scoping Review. Medicina 2021, 57, 1165. [Google Scholar] [CrossRef]
- Mayrovitz, H.N.; Maqsood, R.; Tawakalzada, A.S. Do Magnetic Fields Have a Place in Treating Vascular Complications in Diabetes? Cureus 2022, 14, e24883. [Google Scholar] [CrossRef]
- Maziarz, A.; Kocan, B.; Bester, M.; Budzik, S.; Cholewa, M.; Ochiya, T.; Banas, A. How electromagnetic fields can influence adult stem cells: Positive and negative impacts. Stem Cell Res. Ther. 2016, 7, 54. [Google Scholar] [CrossRef] [Green Version]
- Moretti, L.; Bizzoca, D.; Giancaspro, G.A.; Cassano, G.D.; Moretti, F.; Setti, S.; Moretti, B. Biophysical Stimulation in Athletes’ Joint Degeneration: A Narrative Review. Medicina 2021, 57, 1206. [Google Scholar] [CrossRef] [PubMed]
- Pagani, S.; Veronesi, F.; Aldini, N.N.; Fini, M. Complex Regional Pain Syndrome Type I, a Debilitating and Poorly Understood Syndrome. Possible Role for Pulsed Electromagnetic Fields: A Narrative Review. Pain. Physician 2017, 20, E807–E822. [Google Scholar] [PubMed]
- Panagopoulos, D.J.; Karabarbounis, A.; Margaritis, L.H. Mechanism for action of electromagnetic fields on cells. Biochem. Biophys. Res. Commun. 2002, 298, 95–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, L.; Fu, C.; Wang, L.; Zhang, Q.; Liang, Z.; He, C.; Wei, Q. The Effect of Pulsed Electromagnetic Fields on Angiogenesis. Bioelectromagnetics 2021, 42, 250–258. [Google Scholar] [CrossRef]
- Peng, L.; Fu, C.; Xiong, F.; Zhang, Q.; Liang, Z.; Chen, L.; He, C.; Wei, Q. Effectiveness of Pulsed Electromagnetic Fields on Bone Healing: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Bioelectromagnetics 2020, 41, 323–337. [Google Scholar] [CrossRef]
- Rahbek, U.; Tritsaris, K.; Dissing, S. Interactions of Low-Frequency, Pulsed Electromagnetic Fields with Living Tissue: Biochemical Responses and Clinical Results. Oral Biosci. Med. 2005, 2, 29–40. [Google Scholar]
- Rossi, S.; Hallett, M.; Rossini, P.M.; Pascual-Leone, A.; The Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 2009, 120, 2008–2039. [Google Scholar] [CrossRef] [Green Version]
- Shupak, N.M.; Prato, F.S.; Thomas, A.W. Therapeutic uses of pulsed magnetic-field exposure: A review. URSI Radio Sci. Bull. 2003, 2003, 9–32. [Google Scholar] [CrossRef]
- Tong, J.; Chen, Z.; Sun, G.; Zhou, J.; Zeng, Y.; Zhong, P.; Deng, C.; Chen, X.; Liu, L.; Wang, S.; et al. The Efficacy of Pulsed Electromagnetic Fields on Pain, Stiffness, and Physical Function in Osteoarthritis: A Systematic Review and Meta-Analysis. Pain. Res. Manag. 2022, 2022, 9939891. [Google Scholar] [CrossRef] [PubMed]
- Vadala, M.; Morales-Medina, J.C.; Vallelunga, A.; Palmieri, B.; Laurino, C.; Iannitti, T. Mechanisms and therapeutic effectiveness of pulsed electromagnetic field therapy in oncology. Cancer Med. 2016, 5, 3128–3139. [Google Scholar] [CrossRef]
- Vicenti, G.; Bizzoca, D.; Solarino, G.; Moretti, F.; Ottaviani, G.; Simone, F.; Zavattini, G.; Maccagnano, G.; Noia, G.; Moretti, B. The role of biophysical stimulation with pemfs in fracture healing: From bench to bedside. J. Biol. Regul. Homeost. Agents 2020, 34, 131–135. [Google Scholar] [PubMed]
- Wang, T.; Yang, L.; Jiang, J.; Liu, Y.; Fan, Z.; Zhong, C.; He, C. Pulsed electromagnetic fields: Promising treatment for osteoporosis. Osteoporos. Int. 2019, 30, 267–276. [Google Scholar] [CrossRef]
- Wang, L.; Xie, S.; Zhu, S.; Gao, C.; He, C. Efficacy of Pulsed Electromagnetic Fields on Experimental Osteopenia in Rodents: A Systematic Review. Bioelectromagnetics 2021, 42, 415–431. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; He, H.; Ye, W.; Perry, T.A.; He, C. Effects of Pulsed Electromagnetic Field Therapy on Pain, Stiffness, Physical Function, and Quality of Life in Patients with Osteoarthritis: A Systematic Review and Meta-Analysis of Randomized Placebo-Controlled Trials. Phys. Ther. 2020, 100, 1118–1131. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Xie, Y.; Ni, Z.; Chen, L. Effects and Mechanisms of Exogenous Electromagnetic Field on Bone Cells: A Review. Bioelectromagnetics 2020, 41, 263–278. [Google Scholar] [CrossRef]
- Zhang, W.; Luo, Y.; Xu, J.; Guo, C.; Shi, J.; Li, L.; Sun, X.; Kong, Q. The Possible Role of Electrical Stimulation in Osteoporosis: A Narrative Review. Medicina 2023, 59, 121. [Google Scholar] [CrossRef]
- Polk, C. Biological effects of low-level low-frequency electric and magnetic fields. IEEE Trans. Educ. 1991, 34, 243–249. [Google Scholar] [CrossRef]
- Juutilainen, J.; Lang, S. Genotoxic, carcinogenic and teratogenic effects of electromagnetic fields. Introduction and overview. Mutat. Res. 1997, 387, 165–171. [Google Scholar] [CrossRef]
- Bragin, D.E.; Bragina, O.A.; Hagberg, S.; Nemoto, E.M. Pulsed Electromagnetic Field (PEMF) Mitigates High Intracranial Pressure (ICP) Induced Microvascular Shunting (MVS) in Rats. Acta Neurochir. Suppl. 2018, 126, 93–95. [Google Scholar] [CrossRef] [PubMed]
- Novickij, V.; Kranjc, M.; Staigvila, G.; Dermol-Černe, J.; Meleško, J.; Novickij, J.; Miklavčič, D. High-Pulsed Electromagnetic Field Generator for Contactless Permeabilization of Cells In Vitro. IEEE Trans. Magn. 2020, 56, 5000106. [Google Scholar] [CrossRef]
- Duyn, J.H.; Schenck, J. Contributions to magnetic susceptibility of brain tissue. NMR Biomed. 2017, 30, e3546. [Google Scholar] [CrossRef] [Green Version]
- Formica, D.; Silvestri, S. Biological effects of exposure to magnetic resonance imaging: An overview. Biomed. Eng. Online 2004, 3, 11. [Google Scholar] [CrossRef] [Green Version]
- Sisken, B.F.; Kanje, M.; Lundborg, G.; Herbst, E.; Kurtz, W. Stimulation of rat sciatic nerve regeneration with pulsed electromagnetic fields. Brain Res. 1989, 485, 309–316. [Google Scholar] [CrossRef]
- Wade, B. A Review of Pulsed Electromagnetic Field (PEMF) Mechanisms at a Cellular Level: A Rationale for Clinical Use. AJHR 2013, 1, 51–55. [Google Scholar] [CrossRef]
- Hei, W.H.; Byun, S.H.; Kim, J.S.; Kim, S.; Seo, Y.K.; Park, J.C.; Kim, S.M.; Jahng, J.W.; Lee, J.H. Effects of electromagnetic field (PEMF) exposure at different frequency and duration on the peripheral nerve regeneration: In vitro and in vivo study. Int. J. Neurosci. 2016, 126, 739–748. [Google Scholar] [CrossRef]
- Roberti, R.; Marcianò, G.; Casarella, A.; Rania, V.; Palleria, C.; Muraca, L.; Citraro, R.; De Sarro, G.; Serra, R.; Romeo, P.; et al. High-Intensity, Low-Frequency Pulsed Electromagnetic Field as an Odd Treatment in a Patient with Mixed Foot Ulcer: A Case Report. Reports 2022, 5, 3. [Google Scholar] [CrossRef]
- Tremblay, S.; Rogasch, N.C.; Premoli, I.; Blumberger, D.M.; Casarotto, S.; Chen, R.; Di Lazzaro, V.; Farzan, F.; Ferrarelli, F.; Fitzgerald, P.B.; et al. Clinical utility and prospective of TMS-EEG. Clin. Neurophysiol. 2019, 130, 802–844. [Google Scholar] [CrossRef]
- Jones, I.; Johnson, M.I. Transcutaneous electrical nerve stimulation. Contin. Educ. Anaesth. Crit. Care Pain. 2009, 9, 130–135. [Google Scholar] [CrossRef] [Green Version]
- Sluka, K.; Walsh, D. Transcutaneous electrical nerve stimulation: Basic science mechanisms and clinical effectiveness. J. Pain Off. J. Am. Pain. Soc. 2003, 4, 109–121. [Google Scholar] [CrossRef]
- Smallcomb, M.; Khandare, S.; Vidt, M.E.; Simon, J.C. Therapeutic Ultrasound and Shockwave Therapy for Tendinopathy: A Narrative Review. Am. J. Phys. Med. Rehabil. 2022, 101, 801–807. [Google Scholar] [PubMed]
- Yang, C.; Li, Y.; Du, M.; Chen, Z. Recent advances in ultrasound-triggered therapy. J. Drug Target. 2019, 27, 33–50. [Google Scholar] [CrossRef]
- Porst, H. Review of the Current Status of Low Intensity Extracorporeal Shockwave Therapy (Li-ESWT) in Erectile Dysfunction (ED), Peyronie’s Disease (PD), and Sexual Rehabilitation After Radical Prostatectomy with Special Focus on Technical Aspects of the Different Marketed ESWT Devices Including Personal Experiences in 350 Patients. Sex. Med. Rev. 2021, 9, 93–122. [Google Scholar] [CrossRef]
- Everding, J.; Roßlenbroich, S.; Raschke, M.J. Ultraschall und Stoßwelle in der Pseudarthrosentherapie. Trauma. Berufskrankh. 2017, 19, 260–266. [Google Scholar] [CrossRef]
- Berber, R.; Aziz, S.; Simkins, J.; Lin, S.S.; Mangwani, J. Low Intensity Pulsed Ultrasound Therapy (LIPUS): A review of evidence and potential applications in diabetics. J. Clin. Orthop. Trauma 2020, 11, S500–S505. [Google Scholar] [CrossRef]
- Jiang, X.; Savchenko, O.; Li, Y.; Qi, S.; Yang, T.; Zhang, W.; Chen, J. A Review of Low-Intensity Pulsed Ultrasound for Therapeutic Applications. IEEE Trans. Biomed. Eng. 2019, 66, 2704–2718. [Google Scholar] [CrossRef]
- Maxwell, A.; Sapozhnikov, O.; Bailey, M.; Crum, L.; Xu, Z.; Fowlkes, J.; Cain, C.; Khokhlova, V. Disintegration of Tissue Using High Intensity Focused Ultrasound: Two Approaches That Utilize Shock Waves. Acoust. Today 2012, 8, 24. [Google Scholar] [CrossRef]
- Stiller, M.J.; Pak, G.H.; Shupack, J.L.; Thaler, S.; Kenny, C.; Jondreau, L. A portable pulsed electromagnetic field (PEMF) device to enhance healing of recalcitrant venous ulcers: A double-blind, placebo-controlled clinical trial. Br. J. Dermatol. 1992, 127, 147–154. [Google Scholar] [CrossRef]
- Yang, Z.; Song, J.; Cai, W.; Lu, G.; Zhang, Z. Analysis of the influence of a solenoid magnetic field in the azimuth transmission system. Sci. Rep. 2021, 11, 16242. [Google Scholar] [CrossRef]
- Freund, J.B.; Colonius, T.; Evan, A.P. A cumulative shear mechanism for tissue damage initiation in shock-wave lithotripsy. Ultrasound Med. Biol. 2007, 33, 1495–1503. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, I.; Vojisavljevic, V.; Pirogova, E. Design and Development of an Extremely Low Frequency (ELF) Pulsed Electromagnetic Field (PEMF) System for Wound Healing Promotion. In Proceedings of the World Congress on Medical Physics and Biomedical Engineering, Beijing, China, 26–31 May 2012; Volume 39. [Google Scholar] [CrossRef]
- Daish, C.; Blanchard, R.; Duchi, S.; Onofrillo, C.; Augustine, C.; Fox, K.; Pivonka, P.; Pirogova, E. Design, Fabrication and Validation of a Precursor Pulsed Electromagnetic Field Device for Bone Fracture Repair. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2018, 2018, 4166–4169. [Google Scholar] [CrossRef]
- Siauve, N.; Scorretti, R.; Burais, N.; Nicolas, L.; Nicolas, A. Electromagnetic fields and human body: A new challenge for the electromagnetic field computation. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 2003, 22, 457–469. [Google Scholar] [CrossRef] [Green Version]
- Markov, M.S. Magnetic field therapy: A review. Electromagn. Biol. Med. 2007, 26, 1–23. [Google Scholar] [CrossRef]
- Alexander, S.P.H.; Mathie, A.; Peters, J.A.; Veale, E.L.; Striessnig, J.; Kelly, E.; Armstrong, J.F.; Faccenda, E.; Harding, S.D.; Pawson, A.J.; et al. The Concise Guide to Pharmacology 2019/20: Ion channels. Br. J. Pharmacol. 2019, 176 (Suppl. S1), S142–S228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmer. Available online: https://www.zimmer.de/en/products/physical-therapy/high-energy-inductive-therapy/emfieldpro/ (accessed on 28 May 2023).
- PEMF120. Available online: https://www.pemf120.com/product/pemf-120/ (accessed on 28 May 2023).
- Storz. Available online: https://www.storzmedical.com/en/disciplines/emtt-products-for-musculoskeletal-disorders/magnetolith (accessed on 28 May 2023).
- Hofmag. Available online: https://hofmagtherapy.eu/features/ (accessed on 28 May 2023).
- Medical Area. Available online: https://www.igeamedical.com/en/orthopaedic-therapies/medical-area (accessed on 28 May 2023).
- PST. Available online: http://pst-global.com/the_signal (accessed on 28 May 2023).
- Waldorff, E.I.; Zhang, N.; Ryaby, J.T. Pulsed electromagnetic field applications: A corporate perspective. J. Orthop. Transl. 2017, 9, 60–68. [Google Scholar] [CrossRef]
- SofPulse. Available online: https://patents.google.com/patent/US20130035539A1/en (accessed on 28 May 2023).
- Trock, D.H. Electromagnetic fields and magnets. Investigational treatment for musculoskeletal disorders. Rheum. Dis. Clin. North. Am. 2000, 26, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Martino, C.F.; Perea, H.; Hopfner, U.; Ferguson, V.L.; Wintermantel, E. Effects of weak static magnetic fields on endothelial cells. Bioelectromagnetics 2010, 31, 296–301. [Google Scholar] [CrossRef]
- Ehnert, S.; Schroter, S.; Aspera-Werz, R.H.; Eisler, W.; Falldorf, K.; Ronniger, M.; Nussler, A.K. Translational Insights into Extremely Low Frequency Pulsed Electromagnetic Fields (ELF-PEMFs) for Bone Regeneration after Trauma and Orthopedic Surgery. J. Clin. Med. 2019, 8, 2028. [Google Scholar] [CrossRef] [Green Version]
- Rosendo-Pineda, M.J.; Moreno, C.M.; Vaca, L. Role of ion channels during cell division. Cell Calcium 2020, 91, 102258. [Google Scholar] [CrossRef]
- Funk, R.H.W. Coupling of pulsed electromagnetic fields (PEMF) therapy to molecular grounds of the cell. Am. J. Transl. Res. 2018, 10, 1260. [Google Scholar]
- Gaynor, J.S.; Hagberg, S.; Gurfein, B.T. Veterinary applications of pulsed electromagnetic field therapy. Res. Vet. Sci. 2018, 119, 1–8. [Google Scholar] [CrossRef]
- Colgan, S.P.; Fennimore, B.; Ehrentraut, S.F. Adenosine and gastrointestinal inflammation. J. Mol. Med. 2013, 91, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Varani, K.; Vincenzi, F.; Pasquini, S.; Blo, I.; Salati, S.; Cadossi, M.; De Mattei, M. Pulsed Electromagnetic Field Stimulation in Osteogenesis and Chondrogenesis: Signaling Pathways and Therapeutic Implications. Int. J. Mol. Sci. 2021, 22, 809. [Google Scholar] [CrossRef]
- Andres, R.M.; Terencio, M.C.; Arasa, J.; Paya, M.; Valcuende-Cavero, F.; Navalon, P.; Montesinos, M.C. Adenosine A(2A) and A(2B) Receptors Differentially Modulate Keratinocyte Proliferation: Possible Deregulation in Psoriatic Epidermis. J. Investig. Dermatol. 2017, 137, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Chan, E.S.; Fernandez, P.; Merchant, A.A.; Montesinos, M.C.; Trzaska, S.; Desai, A.; Tung, C.F.; Khoa, D.N.; Pillinger, M.H.; Reiss, A.B.; et al. Adenosine A2A receptors in diffuse dermal fibrosis: Pathogenic role in human dermal fibroblasts and in a murine model of scleroderma. Arthritis Rheum. 2006, 54, 2632–2642. [Google Scholar] [CrossRef] [PubMed]
- Varani, K.; Vincenzi, F.; Ravani, A.; Pasquini, S.; Merighi, S.; Gessi, S.; Setti, S.; Cadossi, M.; Borea, P.A.; Cadossi, R. Adenosine Receptors as a Biological Pathway for the Anti-Inflammatory and Beneficial Effects of Low Frequency Low Energy Pulsed Electromagnetic Fields. Mediat. Inflamm. 2017, 2017, 2740963. [Google Scholar] [CrossRef]
- Vicenti, G.; Bizzoca, D.; Nappi, V.S.; Moretti, F.; Carrozzo, M.; Belviso, V.; Moretti, B. Biophysical stimulation of the knee with PEMFs: From bench to bedside. J. Biol. Regul. Homeost. Agents 2018, 32, 23–28. [Google Scholar]
- Hamid, H.A.; Sarmadi, V.H.; Prasad, V.; Ramasamy, R.; Miskon, A. Electromagnetic field exposure as a plausible approach to enhance the proliferation and differentiation of mesenchymal stem cells in clinically relevant scenarios. J. Zhejiang Univ. Sci. B 2022, 23, 42–57. [Google Scholar] [CrossRef]
- Jiang, L.H.; Mousawi, F.; Yang, X.; Roger, S. ATP-induced Ca2+-signalling mechanisms in the regulation of mesenchymal stem cell migration. Cell Mol. Life Sci. 2017, 74, 3697–3710. [Google Scholar] [CrossRef] [Green Version]
- Vigano, M.; Sansone, V.; d’Agostino, M.C.; Romeo, P.; Perucca Orfei, C.; de Girolamo, L. Mesenchymal stem cells as therapeutic target of biophysical stimulation for the treatment of musculoskeletal disorders. J. Orthop. Surg. Res. 2016, 11, 163. [Google Scholar] [CrossRef] [Green Version]
- Gehwolf, R.S.; Schwemberger, B.; Jessen, M.; Korntner, S.; Wagner, A.; Lehner, C.; Weissenbacher, N.; Tempfer, H.; Traweger, A. Global Responses of Il-1
β -Primed 3D Tendon Constructs to Treatment with Pulsed Electromagnetic Fields. Cells 2019, 8, 399. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Ross, C.L.; Ang, D.C.; Almeida-Porada, G. Targeting Mesenchymal Stromal Cells/Pericytes (MSCs) With Pulsed Electromagnetic Field (PEMF) Has the Potential to Treat Rheumatoid Arthritis. Front. Immunol. 2019, 10, 266. [Google Scholar] [CrossRef]
- Pan, J.; Liang, E.; Cai, Q.; Zhang, D.; Wang, J.; Feng, Y.; Yang, X.; Yang, Y.; Tian, W.; Quan, C.; et al. Progress in studies on pathological changes and future treatment strategies of obesity-associated female stress urinary incontinence: A narrative review. Transl. Androl. Urol. 2021, 10, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Ross, C.L.; Siriwardane, M.; Almeida-Porada, G.; Porada, C.D.; Brink, P.; Christ, G.J.; Harrison, B.S. The effect of low-frequency electromagnetic field on human bone marrow stem/progenitor cell differentiation. Stem Cell Res. 2015, 15, 96–108. [Google Scholar] [CrossRef] [Green Version]
- De Mattei, M.; Grassilli, S.; Pellati, A.; Brugnoli, F.; De Marchi, E.; Contartese, D.; Bertagnolo, V. Pulsed Electromagnetic Fields Modulate miRNAs During Osteogenic Differentiation of Bone Mesenchymal Stem Cells: A Possible Role in the Osteogenic-angiogenic Coupling. Stem Cell Rev. Rep. 2020, 16, 1005–1012. [Google Scholar] [CrossRef]
- Partridge, N.; He, Z.; Selvamurugan, N. Microarray analysis of pulsed electromagnetic field (PEMF) stimulatory effects on human bone marrow stromal cells. J. Bone Miner. Res. 2014, 29, S423. [Google Scholar]
- Wang, Y.; Nishida, S.; Elalieh, H.Z.; Long, R.K.; Halloran, B.P.; Bikle, D.D. Role of IGF-I signaling in regulating osteoclastogenesis. J. Bone Miner. Res. 2006, 21, 1350–1358. [Google Scholar] [CrossRef] [PubMed]
- Goudarzi, I.; Hajizadeh, S.; Salmani, M.E.; Abrari, K. Pulsed electromagnetic fields accelerate wound healing in the skin of diabetic rats. Bioelectromagnetics 2010, 31, 318–323. [Google Scholar] [CrossRef]
- Palmieri, B.; Vadala, M.; Laurino, C. Electromedical devices in wound healing management: A narrative review. J. Wound Care 2020, 29, 408–418. [Google Scholar] [CrossRef]
- Adie, S.; Harris, I.A.; Naylor, J.M.; Rae, H.; Dao, A.; Yong, S.; Ying, V. Pulsed electromagnetic field stimulation for acute tibial shaft fractures: A multicenter, double-blind, randomized trial. J. Bone Jt. Surg. Am. 2011, 93, 1569–1576. [Google Scholar] [CrossRef] [Green Version]
- Nicolakis, P.; Kollmitzer, J.; Crevenna, R.; Bittner, C.; Erdogmus, C.B.; Nicolakis, J. Pulsed magnetic field therapy for osteoarthritis of the knee—A double-blind sham-controlled trial. Wien. Klin. Wochenschr. 2002, 114, 678–684. [Google Scholar]
- Kwan, R.L.; Wong, W.C.; Yip, S.L.; Chan, K.L.; Zheng, Y.P.; Cheing, G.L. Pulsed electromagnetic field therapy promotes healing and microcirculation of chronic diabetic foot ulcers: A pilot study. Adv. Skin. Wound Care 2015, 28, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Costa, F.P.; de Oliveira, A.C.; Meirelles, R.; Machado, M.C.; Zanesco, T.; Surjan, R.; Chammas, M.C.; de Souza Rocha, M.; Morgan, D.; Cantor, A.; et al. Treatment of advanced hepatocellular carcinoma with very low levels of amplitude-modulated electromagnetic fields. Br. J. Cancer 2011, 105, 640–648. [Google Scholar] [CrossRef] [Green Version]
- Thielscher, A.; Antunes, A.; Saturnino, G.B. Field modeling for transcranial magnetic stimulation: A useful tool to understand the physiological effects of TMS? Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2015, 2015, 222–225. [Google Scholar] [CrossRef] [PubMed]
- Nayak, B.P.; Dolkart, O.; Satwalekar, P.; Kumar, Y.P.; Chandrasekar, A.; Fromovich, O.; Yakobson, E.; Barak, S.; Dayube, U.; Shibli, J.A. Effect of the Pulsed Electromagnetic Field (PEMF) on Dental Implants Stability: A Randomized Controlled Clinical Trial. Materials 2020, 13, 1667. [Google Scholar] [CrossRef] [Green Version]
- Lang, S.; Ma, J.; Gong, S.; Wang, Y.; Dong, B.; Ma, X. Pulse Electromagnetic Field for Treating Postmenopausal Osteoporosis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Bioelectromagnetics 2022, 43, 381–393. [Google Scholar] [CrossRef]
Publications | Year | References (With Indexed DOIs) | Focus |
---|---|---|---|
Barati et al. [12]. | 2021 | 212 (204) | Apoptosis |
Bhavsar et al. [13] | 2019 | 171 (147) | Bone healing |
Cadossi et al. [1] | 2020 | 62 (60) | Mechanics of PEMF in bone healing |
Caliogna et al. [14] | 2021 | 54 (0) | Bone healing |
Capone et al. [15] | 2021 | 47 (45) | Neuroprotective after ischemic damage |
Cecoro et al. [16] | 2022 | 74 (65) | Dental implant osseointegration |
Chalidis et al. [17] | 2011 | 27 (24) | Mechanisms of PEMF in bone fractures |
Chen et al. [18] | 2019 | 36 (0) | Osteoarthritis |
Daish et al. [19] | 2017 | 113 (102) | Bone healing |
Di Bartolomeo et al. [20] | 2022 | 98 (93) | Mechanics of PEMF in bone healing |
Funk et al. [10] | 2021 | 83 (0) | Magnetic fields on neurological diseases |
Ganesan et al. [21] | 2009 | 82 (0) | Pain management and improvement in arthritis |
Giorgi et al. [22] | 2021 | 119 (116) | Epigenetic alternation caused by magnetic fields |
Gossling et al. [23] | 1992 | 79 (47) | Bone healing |
Gualdi et al. [24] | 2021 | 122 (111) | Mechanisms in wound healing |
Hannemann et al. [25] | 2014 | 33 (32) | Acute fracture healing |
Khan et al. [26] | 2022 | 29 (0) | Dental implant osseointegration |
Mansourian et al. [27] | 2021 | 101 (90) | PEMF effect on cells |
Markov et al. [28] | 2006 | 173 (166) | Mechanism for pain control |
Markovic et al. [29] | 2022 | 27 (24) | Osteoarthritis |
Massari et al. [30] | 2019 | 74 (65) | Bone and cartilage |
Mauro et al. [31] | 2021 | 26 (26) | Osteoarthritis |
Mayrovitz et al. [32] | 2022 | 72 (70) | Magnetic fields in diabetic complications |
Maziarz et al. [33] | 2016 | 49 (44) | Electromagnetic fields on stem cells |
Moretti et al. [34] | 2021 | 76 (2) | Joint degeneration |
Pagani et al. [35] | 2017 | 85 (0) | Complex regional pain syndrome |
Panagopoulos et al. [36] | 2002 | 61 (49) | Mechanism of electromagnetic fields |
Peng et al. [37] | 2021 | 37 (33) | Angiogenesis |
Peng et al. [38] | 2020 | 57 (42) | Bone healing |
Rahbek et al. [39] | 2004 | 24 (19) | Physical mechanism and tissue interaction |
Rossi et al. [40] | 2009 | 297 (279) | Safety of TMS |
Shupak et al. [41] | 2003 | 115 (15) | PEMF in clinics |
Strauch et al. [11] | 2009 | 63 (0) | Pain and edema |
Tong et al. [42] | 2022 | 42 (40) | Osteoarthritis |
Vadalà et al. [43] | 2016 | 105 (90) | PEMF in oncology |
Vicenti et al. [44] | 2020 | 49 (45) | Bone healing |
Wang et al. [45] | 2019 | 101 (0) | Osteoporosis |
Wang et al. [46] | 2021 | 78 (73) | Osteopenia |
Yang et al. [47] | 2020 | 56 (48) | PEMF in osteoarthritis |
Zhang et al. [48] | 2020 | 89 (87) | Electromagnetic fields on bone cells |
Zhang et al. [49] | 2023 | 78 (0) | Osteoporosis |
Therapy | Physical Field | Note | Scope of Application | Limitations | Indication |
---|---|---|---|---|---|
PEMF (Pulsed Electromagnetic Field) | Electromagnetic Field | A coil is used to rapidly create an electromagnetic field | No contraindicated tissue | Can heat up metallic implants and thermally destroy adjacent tissue; avoid application close to pacemakers [40] | Wound healing disorders, Non-unions, Pain management [41] |
HI-PEMF (High Intensity Pulsed Electromagnetic Field) | Electromagnetic Field | PEMF with much higher energies | No contraindicated tissue | Can heat up metallic implants and thermally destroy adjacent tissue; avoid application close to pacemakers [40] | Fractures, nerve injuries, pain reduction [59] |
TMS (Transcranial Magnetic Stimulation) | Electromagnetic Field | PEMF in the use of treating the brain | Applied on brain tissue | Additional to limitations of PEMF, short-term nausea and vertigo possible, but no permanent harmful effects; uncertain risk of induced epilepsy; avoid at pregnancy [40] | Alzheimer’s, depression, pain management [60] |
TENS (Transcutaneous Electrical Nerve Stimulation) | Electric Field | Electrodes placed on skin create an electrical field, exciting nerves | Nerve stimulation, can result in muscle movement | Difficulty in penetrating into deeper tissue [39]; avoid at pregnancy, epilepsy, and close to pacemakers [61] | Muscle stimulation, pain relief [62] |
US (Ultrasound) | Mechanical Energy | Continuous ultrasound signal as tissue stimulating therapy, in the MHz frequency range | Most tissue types, keep away from eyes and lungs, as pressure reflection may damage tissue | Tissue interfaces may oppose a barrier, can heat up tissue if statically applied | Tendinopathy [63], bone repair, [64] |
ESWT (Extracorporeal Shockwave) | Mechanical Energy | Single pressure shock wave—higher Frequencies, as in ultrasound | Most tissue types, keep away from eyes and lungs, as pressure reflection may damage tissue | Tissue interfaces may oppose a barrier | Tendinopathy [63], erectile dysfunction [65], pseudoarthrosis [66] |
LIPUS (Low Intensity Pulsed Ultrasound) | Mechanical Energy | Pulsed ultrasound in the lower MHz frequency region, with low intensity | Most tissue types, keep away from eyes and lungs, as pressure reflection may damage tissue | Tissue interfaces may oppose a barrier | Fracture healing [67], bone nonunion, soft tissue regeneration [68] |
HIFU (High Intensity Focused Ultrasound) | Mechanical Energy | High energy ultrasound in the higher MHz frequency region, thermally ablates target [69] | Most tissue types, keep away from eyes and lungs, as pressure reflection may damage tissue | Tissue interfaces may oppose a barrier | Minimal invasive surgery alternative [64] |
Symbol | Unit | Description | |
---|---|---|---|
Magnetic flux density | B | Tesla | Intensity of the magnetic field |
Pulse duration | s | Duration of a single pulse or pulse train | |
Pulse repetition frequency | Hz | How often a pulse or pulse train is repeated per second | |
Field frequency | Hz | Main frequency of the signal, can be estimated using the zero-crossings, or, better, by calculating the frequency spectrum of a single pulse or pulse train | |
Pulse gradient | T/s | Maximum slope of the magnetic pulse. It correlates with the induced electrical current in the tissue | |
Pulse signal (Plot) | - | - | Plot of the pulse signal, includes all of the mentioned parameters, and can be used as a replacement |
Device | Maximum Pulse Magnitude B [T] | [Hz] | [77] | Field Frequency [Hz] | Pulse Shape | |
---|---|---|---|---|---|---|
Zimmer—emFieldPro [78] | 3 T | 1–150 | variable | variable | variable | - |
PEMF-120 [79] | 0.94 T | 1–50 | - | - | - | - |
Magnetolith —Storz [80] | 0.2 T | ≤10 | - | 100–300 | Dampened sine wave | 65,300 T/s |
Hofmag [81] | 0.029 T | 6 | 1 ms | 28 | Dampened sine wave | - |
Biostim—IGEA Medical [20,82] | 0.002 T | 75 | 1.3 ms | - | Trapezoidal-shaped signal | - |
BIOMET—EBI Medical Systems [20] | 0.0016 T | 15 | 5 ms | - | Trapezoidal-shaped signal, pulse train | - |
PST [83] | 0.0015 T | 10–20 | - | - | quasi-rectangular | - |
SpinalStim— Orthofix Inc [84] | 0.00068 T | 1.5 | - | 3.85 | Triangle-shaped signal, pulse train | - |
SofPulse [52,85] | 0.000005 T | 5 | 2 ms | 27 MHz | Undefined signal, burst mode | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flatscher, J.; Pavez Loriè, E.; Mittermayr, R.; Meznik, P.; Slezak, P.; Redl, H.; Slezak, C. Pulsed Electromagnetic Fields (PEMF)—Physiological Response and Its Potential in Trauma Treatment. Int. J. Mol. Sci. 2023, 24, 11239. https://doi.org/10.3390/ijms241411239
Flatscher J, Pavez Loriè E, Mittermayr R, Meznik P, Slezak P, Redl H, Slezak C. Pulsed Electromagnetic Fields (PEMF)—Physiological Response and Its Potential in Trauma Treatment. International Journal of Molecular Sciences. 2023; 24(14):11239. https://doi.org/10.3390/ijms241411239
Chicago/Turabian StyleFlatscher, Jonas, Elizabeth Pavez Loriè, Rainer Mittermayr, Paul Meznik, Paul Slezak, Heinz Redl, and Cyrill Slezak. 2023. "Pulsed Electromagnetic Fields (PEMF)—Physiological Response and Its Potential in Trauma Treatment" International Journal of Molecular Sciences 24, no. 14: 11239. https://doi.org/10.3390/ijms241411239