Platelet Pathogen Reduction Technology—Should We Stay or Should We Go…?
Abstract
:1. Introduction
Overview of Platelet Transfusions and Transfusion-Transmitted Infections Risks
2. Understanding Pathogen Reduction Technology (PRT)
2.1. Explanation and Evolution of PRT (Short Analysis of the Three Main Methods)
2.2. Short Analysis of the Three Main Methods
- I.
- INTERCEPT® PR system
- II.
- MIRASOL® PR system
- III.
- THERAFLEX® UVC PR SYSTEM
3. Advantages of PRT for Platelet Transfusions
- (i)
- PRT extends PLT shelf-life.
- (ii)
- PRT and transfusion reactions.
- (iii)
- PRT reduces Ta-GvHD.
- (iv)
- PRT and TTI.
- (v)
- PRT impact on coagulation proteins.
- (vi)
- PRT harmonizes TTI risk between countries.
- (vii)
- PRT does not affect the presence of pre-existing antibodies.
- (viii)
- PRT and sepsis.
3.1. PRT Extends PLT Shelf-Life
3.2. PRT Reduces Transfusion Reactions
3.3. PRT Reduces Transfusion-Associated Graft versus Host Disease
3.4. PRT Reduces TTI
3.5. PRT Impact on Plasma Coagulation Proteins
4. Criticisms and Limitations of PRT
- (i)
- Bleeding risk.
- (ii)
- PLT increment count.
- (iii)
- Biochemical changes.
- (iv)
- Mitochondrial DNA inactivation.
- (v)
- PRT alters microRNA.
- (vi)
- Pathogens not impacted by PRT.
- (vii)
- Costs.
4.1. Bleeding Risk and PLT Count Increment
4.2. PLT Increment Count
4.3. Biochemical Changes
4.4. Mitochondrial DNA Inactivation
4.5. PRT Alters microRNA
4.6. Pathogens Not Impacted by PRT
4.7. PRT High Costs
5. Future Perspectives
Potential Improvements and Advancements in PRT
6. Analysis of Arguments for and against PRT
7. Conclusions
7.1. Summary of Key Points
7.2. Personal Recommendation and Final Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AKI | acute kidney injury |
ALL | acute lymphoblastic leukaemia |
AML | acute myeloid leukaemia |
APC | activated Protein C |
ATG | anti-thymocyte globulin |
BSA | body surface area |
B-SCEP | Blood Supply Contingency and Emergency Plan |
BTS | Blood Transfusion Service |
compound adsorption device | |
CCI | corrected count increment |
CCHFV | Crimean-Congo hemorrhagic fever virus |
CMV | cytomegalovirus |
EDQM | European Directorate for the Quality of Medicines |
FFP | fresh frozen plasma |
GvHD | Graft versus Host Disease |
HEV | hepatitis E virus |
HIV | human immunodeficiency virus |
ICER | incremental cost effectiveness ratio |
IPTAS | Italian Platelet Technology Assessment Study |
ITP | idiopathic thrombocytopenic purpura |
LNH | lymphoma non-Hodgkin |
LRF | Log Reduction Factor |
MB | methylene blue |
mitDNA | mitochondrial DNA |
NAT | nucleic acid testing |
NiV | Nipah virus |
PAS | platelet additive solution |
PCT | photochemically treated |
PLTs | platelets |
PMP | platelet-derived microparticles |
PR | pathogen reduction |
PRT | Pathogen Reduction Technology |
QALY | quality-adjusted life years |
RCC | red cell concentrate |
RCT | randomized control trials |
RSV | respiratory syncytial virus |
SARS-CoV | severe acute respiratory syndrome coronavirus |
SD | solvent detergent |
TA-GvHD | transfusion-associated graft-versus-host disease |
TG | Thrombin generation |
TTI | Transfusion-transmitted Infections |
USUV | Usutu virus |
UV | ultraviolet |
vCJD | variant Jacob Creutzfeldt Disease |
WNV | West Nile virus |
References
- Ainley, L.I.; Hewitt, P.E. Haematology patients and the risk of transfusion transmitted infection. Br. J. Haematol. 2018, 180, 473–483. [Google Scholar] [CrossRef] [PubMed]
- White, S.K.; Schmidt, R.L.; Walker, B.S.; Metcalf, R.A. Bacterial contamination rate of platelet components by primary culture: A systematic review and meta-analysis. Transfusion 2020, 60, 986–996. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.W.X.; Lazarus, H.M.; Good, C.E.; Maitta, R.W.; Jacobs, M.R. Detection of septic transfusion reactions to platelet transfusions by active and passive surveillance. Blood 2016, 127, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Brailsford, S.R.; Tossell, J.; Morrison, R.; McDonald, C.P.; Pitt, T.L. Failure of bacterial screening to detect Staphylococcus aureus: The English experience of donor follow-up. Vox Sang. 2018, 113, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Corean, J.; White, S.K.; Schmidt, R.L.; Walker, B.S.; Fisher, M.A.; Metcalf, R.A. Platelet Component False Positive Detection Rate in Aerobic and Anaerobic Primary Culture: A Systematic Review and Meta-Analysis. Transfus. Med. Rev. 2021, 35, 44–52. [Google Scholar] [CrossRef]
- Cicchetti, A.; Coretti, S.; Sacco, F.; Rebulla, P.; Fiore, A.; Rumi, F.; Di Bidino, R.; Urbina, L.I.; Refolo, P.; Sacchini, D.; et al. Budget impact of implementing platelet pathogen reduction into the Italian blood transfusion system. Blood Transfus. 2018, 16, 483–489. [Google Scholar]
- Giménez-Richarte, A.; Ortiz de Salazar, M.I.; Giménez-Richarte, M.; Larrea, L.; Arbona, C.; Marco, P.; Ramos-Rincón, J.M. Pathogen inactivation methods to prevent transfusion-transmissible arboviruses: A systematic review and meta-analysis. Trop. Med. Int. Health 2023, 28, 262–274. [Google Scholar] [CrossRef]
- Klein, H.G.; Dodd, R.Y.; Dzik, W.H.; Luban, N.L.; Ness, P.M.; Pisciotto, P.; Schiff, P.D.; Snyder, E.L. Current status of solvent/detergent-treated frozen plasma. Transfusion 1998, 38, 102–107. [Google Scholar] [CrossRef]
- Rebulla, P.; Prati, D. Pathogen reduction for platelets-a review of recent implementation strategies. Pathogens 2022, 11, 142. [Google Scholar] [CrossRef]
- Gathof, B.S.; Tauszig, M.E.; Picker, S.M. Pathogen inactivation/reduction of platelet concentrates: Turning theory into practice. ISBT Sci. Ser. 2010, 5, 114–119. [Google Scholar] [CrossRef]
- Guide to the Preparation, Use and Quality Assurance of Blood Components. European Committee EDQM. 21th Edition 2023. Available online: https://freepub.edqm.eu/publications/AUTOPUB_48/detail (accessed on 15 August 2024).
- McCullough, J.; Goldfinger, D.; Gorlin, J.; Riley, W.J.; Sandhu, H.; Stowell, C.; Ward, D.; Clay, M.; Pulkrabek, S.; Chrebtow, V.; et al. Cost implications of implementation of pathogen-inactivated platelets. Transfusion 2015, 55, 2312–2320. [Google Scholar] [CrossRef] [PubMed]
- Cid, J.; Escolar, G.; Lozano, M. Therapeutic efficacy of platelet components treated with amotosalen and ultraviolet A pathogen inactivation method: Results of a meta-analysis of randomized controlled trials. Vox Sang. 2012, 103, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Kerkhoffs, J.L.H.; van Putten, W.L.J.; Novotny, V.M.J.; Te Boekhorst, P.A.W.; Schipperus, M.R.; Zwaginga, J.J.; van Pampus, L.C.M.; de Greef, G.E.; Luten, M.; Huijgens, P.C.; et al. Dutch-Belgian HOVON cooperative group. Clinical effectiveness of leucoreduced, pooled donor platelet concentrates, stored in plasma or additive solution with and without pathogen reduction. Br. J. Haematol. 2010, 150, 209–217. [Google Scholar] [CrossRef]
- Castro, G.; Merkel, P.A.; Giclas, H.E.; Gibula, A.; Andersen, G.E.; Corash, L.M.; Lin, J.S.; Green, J.; Knight, V.; Stassinopoulos, A. Amotosalen/UVA treatment inactivates T cells more effectively than the recommended gamma dose for prevention of transfusion-associated graft-versus-host disease. Transfusion 2018, 58, 1506–1515. [Google Scholar] [CrossRef] [PubMed]
- Lozano, M.; Knutson, F.; Tardivel, R.; Cid, J.; Maymó, R.M.; Löf, H.; Roddie, H.; Pelly, J.; Docherty, A.; Sherman, C.; et al. A multi-centre study of therapeutic efficacy and safety of platelet components treated with amotosalen and ultraviolet A pathogen inactivation stored for 6 or 7 d prior to transfusion. Br. J. Haematol. 2011, 153, 393–401. [Google Scholar] [CrossRef]
- Kasirye, R.; Hume, H.A.; Bloch, E.M.; Lubega, I.; Kyeyune, D.; Shrestha, R.; Ddungu, H.; Musana, H.W.; Dhabangi, A.; Ouma, J.; et al. The Mirasol Evaluation of Reduction in Infections Trial (MERIT): Study protocol for a randomized controlled clinical trial. Trials 2022, 23, 257. [Google Scholar] [CrossRef]
- Allain, J.P.; Owusu-Ofori, A.K.; Assennato, S.M.; Marschner, S.; Goodrich, R.P.; Owusu-Ofori, S. Effect of Plasmodium inactivation in whole blood on the incidence of blood transfusion-transmitted malaria in endemic regions: The African Investigation of the Mirasol System (AIMS) randomised controlled trial. Lancet 2016, 387, 1753–1761. [Google Scholar] [CrossRef]
- Ojea, A.M.; Seco, C.; Mata, P.; Muñoz, M.D.C.; Álvarez Argüelles, M.E.; Rodríguez-Frías, F.; Quer Sivila, J.; Rando Segura, A.; García-Gala, J.M.; Rodriguez, M. Transfusion-transmission of hepatitis E virus through red blood cell transfusion but not through platelet concentrates: A case report from Spain. Transfusion 2023, 63, 1767–1772. [Google Scholar] [CrossRef]
- Owada, T.; Kaneko, M.; Matsumoto, C.; Sobata, R.; Igarashi, M.; Suzuki, K.; Matsubayashi, K.; Mio, K.; Uchida, S.; Satake, M.; et al. Establishment of culture systems for Genotypes 3 and 4 hepatitis E virus (HEV) obtained from human blood and application of HEV inactivation using a pathogen reduction technology system. Transfusion 2014, 54, 2820–2827. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Marco, T.; Garcia-Recio, M.; Girona-Llobera, E. Our experience in riboflavin and ultraviolet light pathogen reduction technology for platelets: From platelet production to patient care. Transfusion 2018, 58, 1881–1889. [Google Scholar] [CrossRef]
- Koepsell, S.A.; Stolla, M.; Sedjo, R.L.; Carson, J.; Knudson, M.; Cook, R.; Fasano, R.; Ngamsuntikul, S.G.; Cohn, C.; Gorlin, J.; et al. Results of clinical effectiveness of conventional versus Mirasol-treated Apheresis Platelets in Patients with Hypoproliferative Thrombocytopenia (MiPLATE) trial. Transfusion 2024, 64, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Malvaux, N.; Defraigne, F.; Bartziali, S.; Bellora, C.; Mommaerts, K.; Betsou, F.; Schuhmacher, A. In Vitro Comparative Study of Platelets Treated with Two Pathogen-Inactivation Methods to Extend Shelf Life to 7 Days. Pathogens 2022, 11, 343. [Google Scholar] [CrossRef] [PubMed]
- Norris, P.J.; Kaidarova, Z.; Maiorana, E.; Milani, S.; Lebedeva, M.; Busch, M.P.; Custer, B.; Rebulla, P. Ultraviolet light-based pathogen inactivation and alloimmunization after platelet transfusion: Results from a randomized trial. Transfusion 2018, 58, 1210–1217. [Google Scholar] [CrossRef]
- Li, J.; de Korte, D.; Woolum, M.D.; Ruane, P.H.; Keil, S.D.; Lockerbie, O.; McLean, R.; Goodrich, R.P. Pathogen reduction of buffy coat platelet concentrates using riboflavin and light: Comparisons with pathogen-reduction technology-treated apheresis platelet products. Vox Sang. 2004, 87, 82–90. [Google Scholar] [CrossRef]
- Escolar, G.; Diaz-Ricart, M.; McCullough, J. Impact of different pathogen reduction technologies on the biochemistry, function, and clinical effectiveness of platelet concentrates: An updated view during a pandemic. Transfusion 2022, 62, 227–246. [Google Scholar] [CrossRef] [PubMed]
- Seltsam, A.; Müller, T.H. UVC Irradiation for Pathogen Reduction of Platelet Concentrates and Plasma. Transfus. Med. Hemother. 2011, 38, 43–54. [Google Scholar] [CrossRef]
- Gravemann, U.; Handke, W.; Müller, T.H.; Seltsam, A. Bacterial inactivation of platelet concentrates with the THERAFLEX UV-Platelets pathogen inactivation system. Transfusion 2019, 59, 1324–1332. [Google Scholar] [CrossRef]
- Eickmann, M.; Gravemann, U.; Handke, W.; Tolksdorf, F.; Reichenberg, S.; Müller, T.H.; Seltsam, A. Inactivation of three emerging viruses—Severe acute respiratory syndrome coronavirus, Crimean–Congo haemorrhagic fever virus and Nipah virus—In platelet concentrates by ultraviolet C light and in plasma by methylene blue plus visible light. Vox Sang. 2020, 115, 146–151. [Google Scholar] [CrossRef]
- Praditya, D.; Friesland, M.; Gravemann, U.; Handke, W.; Todt, D.; Behrendt, P.; Müller, T.H.; Steinmann, E.; Seltsam, A. Hepatitis E virus is effectively inactivated in platelet concentrates by ultraviolet C light. Vox Sang. 2020, 115, 555–561. [Google Scholar] [CrossRef]
- Brixner, V.; Bug, G.; Pohler, P.; Krämer, D.; Metzner, B.; Voss, A.; Casper, J.; Ritter, U.; Klein, S.; Alakel, N.; et al. Efficacy of UVC-treated, pathogen-reduced platelets versus untreated platelets: A randomized controlled non-inferiority trial. Haematologica 2021, 106, 1086–1096. [Google Scholar] [CrossRef]
- Bashir, S.; Cookson, P.; Wiltshire, M.; Hawkins, L.; Sonoda, L.; Thomas, S.; Seltsam, A.; Tolksdorf, F.; Williamson, L.M.; Cardigan, R. Pathogen inactivation of platelets using ultraviolet C light: Effect on in vitro function and recovery and survival of platelets. Transfusion 2013, 53, 990–1000. [Google Scholar] [CrossRef] [PubMed]
- Schulze, T.J.; Graveman, U.; Seltsam, A. THERAFLEX ultraviolet C (UVC)-based pathogen reduction technology for bacterial inactivation in blood components: Advantages and limitations. Ann. Blood 2002, 7, 28. [Google Scholar] [CrossRef]
- Ramirez-Arcos, S.; Evans, S.; McIntyre, T.; Pang, C.; Yi, Q.L.; DiFranco, C.; Goldman, M. Extension of platelet shelf life with an improved bacterial testing algorithm. Transfusion 2020, 60, 2918–2928. [Google Scholar] [CrossRef] [PubMed]
- Ohlsson, S.; Diedrich, B.; Uhlin, M.; Sandgren, P. Optimized processing for pathogen inactivation of double-dose buffy-coat platelet concentrates: Maintained in vitro quality over 7-day storage. Vox Sang. 2018, 113, 611–621. [Google Scholar] [CrossRef]
- Gorria, C.; Labata, G.; Lezaun, M.; López, F.J.; Pérez Aliaga, A.I.; Pérez Vaquero, M.Á. Impact of implementing pathogen reduction technologies for platelets on reducing outdates. Vox Sang. 2020, 115, 167–173. [Google Scholar] [CrossRef]
- Pitman, J.P.; Payrat, J.M.; Park, M.S.; Liu, K.; Corash, L.; Benjamin, R.J. Longitudinal analysis of annual national hemovigilance data to assess pathogen reduced platelet transfusion trends during conversion to routine universal clinical use and 7-day storage. Transfusion 2023, 63, 711–723. [Google Scholar] [CrossRef]
- Fast, L.D.; Dileone, G.; Li, J.; Goodrich, R. Functional inactivation of white blood cells by Mirasol treatment. Transfusion 2006, 46, 642–648. [Google Scholar] [CrossRef]
- Corash, L.; Benjamin, R.J. The role of hemovigilance and postmarketing studies when introducing innovation into transfusion medicine practice: The amotosalen-ultraviolet A pathogen reduction treatment model. Transfusion 2016, 56 (Suppl. S1), S29–S38. [Google Scholar] [CrossRef] [PubMed]
- Fast, L.D.; DiLeone, G.; Marschner, S. Inactivation of human white blood cells in platelet products after pathogen reduction technology treatment in comparison to gamma irradiation. Transfusion 2011, 51, 1397–1404. [Google Scholar] [CrossRef]
- Sim, J.; Tsoi, W.C.; Lee, C.K.; Leung, R.; Lam, C.C.K.; Koontz, C.; Liu, A.Y.; Huang, N.; Benjamin, R.J.; Vermeij, H.J.; et al. Transfusion of pathogen-reduced platelet components without leukoreduction. Transfusion 2019, 59, 1953–1961. [Google Scholar] [CrossRef]
- Fast, L.D. Developments in the prevention of transfusion-associated graft-versus-host disease. Br. J. Haematol. 2012, 158, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, L.; Devine, D.V.; Reesink, H.W.; Panzer, S.; Wong, J.; Raison, T.; Benson, S.; Pink, J.; Leitner, G.C.; Horvath, M.; et al. Prevention of transfusion-transmitted cytomegalovirus (CMV) infection: Standards of care. Vox Sang. 2014, 107, 276–311. [Google Scholar] [CrossRef] [PubMed]
- INTERCEPT Platelets, Technical Data Sheet. Available online: https://www.interceptbloodsystem.com/sites/default/files/resources/prd-tds_00121_v10.0_reduced_file_size_-_secured.pdf (accessed on 15 August 2024).
- Lanteri, M.C.; Santa-Maria, F.; Laughhunn, A.; Girard, Y.A.; Picard-Maureau, M.; Payrat, J.M.; Irsch, J.; Stassinopoulos, A.; Bringmann, P. Inactivation of a broad spectrum of viruses and parasites by photochemical treatment of plasma and platelets using amotosalen and ultraviolet A light. Transfusion 2020, 60, 1319–1331. [Google Scholar] [CrossRef]
- Available online: https://www.terumobct.com/Public/306690232.pdf (accessed on 25 August 2024).
- Available online: https://aob.amegroups.org/article/view/6833/html (accessed on 25 August 2024).
- Castro, E.; González, L.M.; Rubio, J.M.; Ramiro, R.; Gironés, N.; Montero, E. The efficacy of the ultraviolet C pathogen inactivation system in the reduction of Babesia divergens in pooled buffy coat platelets. Transfusion 2014, 54, 2207–2216. [Google Scholar] [CrossRef] [PubMed]
- Gravemann, U.; Boelke, M.; Könenkamp, L.; Söder, L.; Maurer, M.; Ziegler, U.; Schulze, T.J.; Seltsam, A.; Becker, S.C.; Steffen, I. West Nile and Usutu viruses are efficiently inactivated in platelet concentrates by UVC light using the THERAFLEX UV-Platelets system. Vox Sang. 2024, 119, 827–833. [Google Scholar] [CrossRef]
- Coene, J.; Devreese, K.; Sabot, B.; Feys, H.B.; Vandekerckhove, P.; Compernolle, V. Paired analysis of plasma proteins and coagulant capacity after treatment with three methods of pathogen reduction. Transfusion 2014, 54, 1321–1331. [Google Scholar] [CrossRef]
- Ravanat, C.; Dupuis, A.; Marpaux, N.; Naegelen, C.; Mourey, G.; Isola, H.; Laforet, M.; Morel, P.; Gachet, C. Is the thrombin generation test, a useful research tool, suitable to characterize therapeutic plasma? In Proceedings of the ISTH 2017, Berlin, Germany, 8–13 July 2017.
- Flamholz, R.; Jeon, H.R.; Baron, J.M.; Baron, B.W. Study of three patients with thrombotic thrombocytopenic purpura exchanged with solvent/detergent-treated plasma: Is its decreased protein S activity clinically related to their development of deep venous thromboses? J. Clin. Apher. 2000, 15, 169–172. [Google Scholar] [CrossRef]
- Yarranton, H.; Lawrie, A.S.; Purdy, G.; Mackie, I.J.; Machin, S.J. Comparison of von Willebrand factor antigen, von Willebrand factor-cleaving protease and protein S in blood components used for treatment of thrombotic thrombocytopenic purpura. Transfus. Med. 2004, 14, 39–44. [Google Scholar] [CrossRef]
- Hellstern, P.; Solheimb, B.G. The Use of Solvent/Detergent Treatment in Pathogen Reduction of Plasma. Transfus. Med. Hemother. 2011, 38, 65–70. [Google Scholar] [CrossRef]
- Piccin, A.; O’Connor-Byrne, N.; Daves, M.; Lynch, K.; Farshbaf, A.D.; Martin-Loeches, I. Autoimmune disease and sickle cell anaemia: ‘Intersecting pathways and differential diagnosis’. Br. J. Haematol. 2022, 197, 518–528. [Google Scholar] [CrossRef]
- Backholer, L.; Wiltshire, M.; Proffitt, S.; Cookson, P.; Cardigan, R. Paired comparison of methylene blue- and amotosalen-treated plasma and cryoprecipitate. Vox Sang. 2016, 110, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Larrea, L.; Ortiz-de-Salazar, M.I.; Martínez, P.; Roig, R. Quantitative analysis of plasma proteins in whole blood-derived fresh frozen plasma prepared with three pathogen reduction technologies. Transfus. Apher. Sci. 2015, 52, 305–310. [Google Scholar] [CrossRef]
- Estcourt, L.J.; Malouf, R.; Hopewell, S.; Trivella, M.; Doree, C.; Stanworth, S.J.; Murphy, M.F. Pathogen-reduced platelets for the prevention of bleeding. Cochrane Database Syst. Rev. 2017, 7, CD009072. [Google Scholar] [CrossRef]
- Pati, I.; Masiello, F.; Pupella, S.; Cruciani, M.; De Angelis, V. Efficacy and Safety of Pathogen-Reduced Platelets Compared with Standard Apheresis Platelets: A Systematic Review of RCTs. Pathogens 2022, 11, 639. [Google Scholar] [CrossRef] [PubMed]
- Rebulla, P.; Vaglio, S.; Beccaria, F.; Bonfichi, M.; Carella, A.; Chiurazzi, F.; Coluzzi, S.; Cortelezzi, A.; Gandini, G.; Girelli, G.; et al. Clinical effectiveness of platelets in additive solution treated with two commercial pathogen-reduction technologies. Transfusion 2017, 57, 1171–1183. [Google Scholar] [CrossRef] [PubMed]
- Garban, F.; Guyard, A.; Labussière, H.; Bulabois, C.E.; Marchand, T.; Mounier, C.; Caillot, D.; Bay, J.O.; Coiteux, V.; Schmidt-Tanguy, A.; et al. Evaluation of the Efficacy of Platelets Treated with Pathogen Reduction Process (EFFIPAP) Study Group. Comparison of the Hemostatic Efficacy of Pathogen-Reduced Platelets vs Untreated Platelets in Patients with Thrombocytopenia and Malignant Hematologic Diseases: A Randomized Clinical Trial. JAMA Oncol. 2018, 4, 468–475. [Google Scholar]
- Osselaer, J.C.; Doyen, C.; Defoin, L.; Debry, C.; Goffaux, M.; Messe, N.; Van Hooydonk, M.; Bosly, A.; Lin, J.S.; Lin, L.; et al. Universal adoption of pathogen inactivation of platelet components: Impact on platelet and red blood cell component use. Transfusion 2009, 49, 1412–1422. [Google Scholar] [CrossRef]
- Cazenave, J.P.; Isola, H.; Waller, C.; Mendel, I.; Kientz, D.; Laforêt, M.; Raidot, J.P.; Kandel, G.; Wiesel, M.L.; Corash, L. Use of additive solutions and pathogen inactivation treatment of platelet components in a regional blood center: Impact on patient outcomes and component utilization during a 3-year period. Transfusion 2011, 51, 622–629. [Google Scholar] [CrossRef]
- Infanti, L.; Holbro, A.; Passweg, J.; Bolliger, D.; Tsakiris, D.A.; Merki, R.; Plattner, A.; Tappe, D.; Irsch, J.; Lin, J.S.; et al. Clinical impact of amotosalen-ultraviolet A pathogen-inactivated platelets stored for up to 7 days. Transfusion 2019, 59, 3350–3361. [Google Scholar] [CrossRef]
- Amato, M.; Schennach, H.; Astl, M.; Chen, C.Y.; Lin, J.S.; Benjamin, R.J.; Nussbaumer, W. Impact of platelet pathogen inactivation on blood component utilization and patient safety in a large Austrian Regional Medical Centre. Vox Sang. 2017, 112, 47–55. [Google Scholar] [CrossRef]
- Nussbaumer, W.; Amato, M.; Schennach, H.; Astl, M.; Chen, C.Y.; Lin, J.S.; Corash, L.; Benjamin, R.J. Patient outcomes and amotosalen/UVA-treated platelet utilization in massively transfused patients. Vox Sang. 2017, 112, 249–256. [Google Scholar] [CrossRef] [PubMed]
- McCullough, J.; Vesole, D.H.; Benjamin, R.J.; Slichter, S.J.; Pineda, A.; Snyder, E.; Stadtmauer, E.A.; Lopez-Plaza, I.; Coutre, S.; Strauss, R.G.; et al. Therapeutic efficacy and safety of platelets treated with a photochemical process for pathogen inactivation: The SPRINT Trial. Blood 2004, 104, 1534–1541. [Google Scholar] [CrossRef] [PubMed]
- Blake, J.T.; McTaggart, K.; Couture, C. Estimating the impact on the inventory of implementing pathogen-reduced platelets in Canada. Transfusion 2021, 61, 3150–3160. [Google Scholar] [CrossRef]
- Murphy, S.; Snyder, E.; Cable, R.; Slichter, S.J.; Strauss, R.G.; McCullough, J.; Lin, J.; Corash, L.; Conlan, M.G. SPRINT Study Group. Platelet dose consistency and its effect on the number of platelet transfusions for support of thrombocytopenia: An analysis of the SPRINT trial of platelets photochemically treated with amotosalen HCl and ultraviolet A light. Transfusion 2006, 46, 24–33. [Google Scholar] [CrossRef]
- Stivala, S.; Gobbato, S.; Infanti, L.; Reiner, M.F.; Bonetti, N.; Meyer, S.C.; Camici, G.G.; Lüscher, T.F.; Buser, A.; Beer, J.H. Amotosalen/ultraviolet A pathogen inactivation technology reduces platelet activatability, induces apoptosis and accelerates clearance. Haematologica 2017, 102, 1650–1660. [Google Scholar] [CrossRef]
- Kim, S.; Handke, W.; Gravemann, U.; Döscher, A.; Brixner, V.; Müller, T.H.; Seltsam, A. Mitochondrial DNA multiplex real-time polymerase chain reaction inhibition assay for quality control of pathogen inactivation by ultraviolet C light in platelet concentrates. Transfusion 2018, 58, 758–765. [Google Scholar] [CrossRef]
- Bruchmüller, I.; Lösel, R.; Bugert, P.; Corash, L.; Lin, L.; Klüter, H.; Janetzko, K. Effect of the psoralen-based photochemical pathogen inactivation on mitochondrial DNA in platelets. Platelets 2005, 16, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Bakkour, S.; Chafets, D.M.; Wen, L.; Dupuis, K.; Castro, G.; Green, J.M.; Stassinopoulos, A.; Busch, M.P.; Lee, T.H. Assessment of nucleic acid modification induced by amotosalen and ultraviolet A light treatment of platelets and plasma using real-time polymerase chain reaction amplification of variable length fragments of mitochondrial DNA. Transfusion 2016, 56, 410–420. [Google Scholar] [CrossRef]
- Diallo, I.; Benmoussa, A.; Laugier, J.; Osman, A.; Hitzler, W.E.; Provost, P. Platelet Pathogen Reduction Technologies Alter the MicroRNA Profile of Platelet-Derived Microparticles. Front. Cardiovasc. Med. 2020, 7, 31. [Google Scholar] [CrossRef]
- Arnason, N.A.; Johannson, F.; Landrö, R.; Hardarsson, B.; Irsch, J.; Gudmundsson, S.; Rolfsson, O.; Sigurjonsson, O.E. Pathogen inactivation with amotosalen plus UVA illumination minimally impacts microRNA expression in platelets during storage under standard blood banking conditions. Transfusion 2019, 59, 3727–3735. [Google Scholar] [CrossRef]
- Farrugia, A. Cost of pathogen reduction for platelets: Reply to Cicchetti et al. Blood Transfus 2018; 16: 483-9. Blood Transfus. 2019, 17, 84. [Google Scholar] [PubMed]
- Farrugia, A. The Evolution of the Safety of Plasma Products from Pathogen Transmission—A Continuing Narrative. Pathogens 2023, 12, 318. [Google Scholar] [CrossRef] [PubMed]
- Bell, C.E.; Botteman, M.F.; Gao, X.; Weissfeld, J.L.; Postma, M.J.; Pashos, C.L.; Triulzi, D.; Staginnus, U. Cost-effectiveness of transfusion of platelet components prepared with pathogen inactivation treatment in the United States. Clin. Ther. 2003, 25, 2464–2486. [Google Scholar] [CrossRef] [PubMed]
- Davison, N.; Willis, A. Abstracts of the 31st Regional ISBT Congress, ISBT In Focus, Virtual meeting, 2–8 June 2021. Vox Sang. 2021, 116 (Suppl. S1), 5–188. [Google Scholar] [CrossRef]
- Grégoire, Y.; Delage, G.; Custer, B.; Rochette, S.; Renaud, C.; Lewin, A.; Germain, M. Cost-effectiveness of pathogen reduction technology for plasma and platelets in Quebec: A focus on potential emerging pathogens. Transfusion 2022, 62, 1208–1217. [Google Scholar] [CrossRef] [PubMed]
- Rosskopf, K.; Helmberg, W.; Schlenke, P. Pathogen reduction of double-dose platelet concentrates from pools of eight buffy coats: Product quality, safety, and economic aspects. Transfusion 2020, 60, 2058–2066. [Google Scholar] [CrossRef]
- Keltner, N.M.; Cushing, M.M.; Haas, T.; Spinella, P.C. Analyzing and modeling massive transfusion strategies and the role of fibrinogen-How much is the patient actually receiving? Transfusion 2024, 64 (Suppl. S2), S136–S145. [Google Scholar] [CrossRef]
Intercept PR System | Mirasol PR System | Theraflex UVC PR System | |
---|---|---|---|
UV Type | UVA | UVB | UVC |
Mechanism of action | Following exposure to UVA, an amotosalen compound will crosslink to DNA and RNA chains. | Riboflavin (Vitamin B2) associates with nucleic acids and mediates an oxygen-independent electron transfer process leading to the modification of DNA/RNA upon exposure to UV light. | |
Adsorption device | The residual amotosalen is removed using a compound adsorption device ( | Not needed. | Not needed. |
Toxicity | No toxicologically relevant effects. The safety margins of amotosalen alone in toxicity studies are >1000. | No toxicity. | No toxicity. |
Advantages | Excellent microbiological spectrum. | Good microbiological spectrum. | Good microbiological spectrum. Cost contained. |
Disadvantages | High cost. Possibility of some saving by treating double dose. | High cost. | Does not protect against a large spectrum of microbiological agents. Large studies are lacking. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piccin, A.; Allameddine, A.; Spizzo, G.; Lappin, K.M.; Prati, D. Platelet Pathogen Reduction Technology—Should We Stay or Should We Go…? J. Clin. Med. 2024, 13, 5359. https://doi.org/10.3390/jcm13185359
Piccin A, Allameddine A, Spizzo G, Lappin KM, Prati D. Platelet Pathogen Reduction Technology—Should We Stay or Should We Go…? Journal of Clinical Medicine. 2024; 13(18):5359. https://doi.org/10.3390/jcm13185359
Chicago/Turabian StylePiccin, Andrea, Allameddine Allameddine, Gilbert Spizzo, Katrina M. Lappin, and Daniele Prati. 2024. "Platelet Pathogen Reduction Technology—Should We Stay or Should We Go…?" Journal of Clinical Medicine 13, no. 18: 5359. https://doi.org/10.3390/jcm13185359