(Translated by https://www.hiragana.jp/)
MDPI - Publisher of Open Access Journals
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (164,669)

Search Parameters:
Keywords = detection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 903 KiB  
Article
Robustness of Deep-Learning-Based RF UAV Detectors
by Hilal Elyousseph and Majid Altamimi
Sensors 2024, 24(22), 7339; https://doi.org/10.3390/s24227339 (registering DOI) - 17 Nov 2024
Abstract
The proliferation of low-cost, small radar cross-section UAVs (unmanned aerial vehicles) necessitates innovative solutions for countering them. Since these UAVs typically operate with a radio control link, a promising defense technique involves passive scanning of the radio frequency (RF) spectrum to detect UAV [...] Read more.
The proliferation of low-cost, small radar cross-section UAVs (unmanned aerial vehicles) necessitates innovative solutions for countering them. Since these UAVs typically operate with a radio control link, a promising defense technique involves passive scanning of the radio frequency (RF) spectrum to detect UAV control signals. This approach is enhanced when integrated with machine-learning (ML) and deep-learning (DL) methods. Currently, this field is actively researched, with various studies proposing different ML/DL architectures competing for optimal accuracy. However, there is a notable gap regarding robustness, which refers to a UAV detector’s ability to maintain high accuracy across diverse scenarios, rather than excelling in just one specific test scenario and failing in others. This aspect is critical, as inaccuracies in UAV detection could lead to severe consequences. In this work, we introduce a new dataset specifically designed to test for robustness. Instead of the existing approach of extracting the test data from the same pool as the training data, we allowed for multiple categories of test data based on channel conditions. Utilizing existing UAV detectors, we found that although coefficient classifiers have outperformed CNNs in previous works, our findings indicate that image classifiers exhibit approximately 40% greater robustness than coefficient classifiers under low signal-to-noise ratio (SNR) conditions. Specifically, the CNN classifier demonstrated sustained accuracy in various RF channel conditions not included in the training set, whereas the coefficient classifier exhibited partial or complete failure depending on channel characteristics. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

9 pages, 1089 KiB  
Case Report
Broadening the PHIP-Associated Neurodevelopmental Phenotype
by Giulia Pascolini, Giovanni Luca Scaglione, Balasubramanian Chandramouli, Daniele Castiglia, Giovanni Di Zenzo and Biagio Didona
Children 2024, 11(11), 1395; https://doi.org/10.3390/children11111395 (registering DOI) - 17 Nov 2024
Abstract
Background: Monoallelic damaging variants in PHIP (MIM*612870), encoding the Pleckstrin Homology Domain Interacting Protein, have been associated with a novel neurodevelopmental disorder, also termed Chung–Jansen syndrome (CHUJANS, MIM#617991). Most of the described individuals show developmental delay (DD)/intellectual disability (ID), obesity/overweight, and variable congenital [...] Read more.
Background: Monoallelic damaging variants in PHIP (MIM*612870), encoding the Pleckstrin Homology Domain Interacting Protein, have been associated with a novel neurodevelopmental disorder, also termed Chung–Jansen syndrome (CHUJANS, MIM#617991). Most of the described individuals show developmental delay (DD)/intellectual disability (ID), obesity/overweight, and variable congenital anomalies, so the condition can be considered as an ID–overweight syndrome. Case Description: We evaluated a child presenting with DD/ID and a craniofacial phenotype reminiscent of a Pitt–Hopkins syndrome (PTHS)-like condition. We performed a clinical exome analysis on his biological sample, as well as an in silico prediction of the obtained data. At the same time, we interrogated the DeepGestalt technology powered by Face2Gene (F2G), using a frontal image of the proband, and clinically reviewed the earlier CHUJANS patients. In this child, we found a novel PHIP pathogenetic variant, which we corroborated through a protein modeling approach. The F2G platform supported the initial clinical hypothesis of a PTHS-like condition, while the clinical review highlighted the lack of the main frequent CHUJANS clinical features in this child. Conclusions: The unusual clinical presentation of this novel patient resembles a PTHS-like condition. However, a novel variant in PHIP has been unexpectedly detected, expanding the phenotypic spectrum of CHUJANS. Notably, PTHS (MIM#610954), which is a different ID syndrome caused by heterozygous variants in TCF4 (MIM*610954), is not classically considered in the differential diagnosis of CHUJANS nor has been cited in the previous studies. This could support other complex diagnoses and invite further patients’ descriptions. Full article
(This article belongs to the Special Issue Neurodevelopmental Disorders in Pediatrics)
21 pages, 4718 KiB  
Article
Hypoxia Preconditioned Serum Hydrogel (HPS-H) Accelerates Dermal Regeneration in a Porcine Wound Model
by Jun Jiang, Tanita Man, Manuela Kirsch, Samuel Knoedler, Kirstin Andersen, Judith Reiser, Julia Werner, Benjamin Trautz, Xiaobin Cong, Selma Forster, Sarah Alageel, Ulf Dornseifer, Arndt F. Schilling, Hans-Günther Machens, Haydar Kükrek and Philipp Moog
Gels 2024, 10(11), 748; https://doi.org/10.3390/gels10110748 (registering DOI) - 17 Nov 2024
Abstract
Harnessing the body’s intrinsic resources for wound healing is becoming a rapidly advancing field in regenerative medicine research. This study investigates the effects of the topical application of a novel porcine Hypoxia Preconditioned Serum Hydrogel (HPS-H) on wound healing using a minipig model [...] Read more.
Harnessing the body’s intrinsic resources for wound healing is becoming a rapidly advancing field in regenerative medicine research. This study investigates the effects of the topical application of a novel porcine Hypoxia Preconditioned Serum Hydrogel (HPS-H) on wound healing using a minipig model over a 21-day period. Porcine HPS exhibited up to 2.8× elevated levels of key angiogenic growth factors (VEGF-A, PDGF-BB, and bFGF) and demonstrated a superior angiogenic effect in a tube formation assay with human umbilical endothelial cells (HUVECs) in comparison to porcine normal serum (NS). Incorporating HPS into a hydrogel carrier matrix (HPS-H) facilitated the sustained release of growth factors for up to 5 days. In the in vivo experiment, wounds treated with HPS-H were compared to those treated with normal serum hydrogel (NS-H), hydrogel only (H), and no treatment (NT). At day 10 post-wounding, the HPS-H group was observed to promote up to 1.7× faster wound closure as a result of accelerated epithelialization and wound contraction. Hyperspectral imaging revealed up to 12.9% higher superficial tissue oxygenation and deep perfusion in HPS-H-treated wounds at day 10. The immunohistochemical staining of wound biopsies detected increased formation of blood vessels (CD31), lymphatic vessels (LYVE-1), and myofibroblasts (alpha-SMA) in the HPS-H group. These findings suggest that the topical application of HPS-H can significantly accelerate dermal wound healing in an autologous porcine model. Full article
(This article belongs to the Special Issue Gel-Based Novel Wound Dressing)
13 pages, 343 KiB  
Article
Retinopathy of Prematurity: Incidence, Risk Factors, and Treatment Outcomes in a Tertiary Care Center
by Mara Nike Blazon, Sandra Rezar-Dreindl, Lorenz Wassermann, Thomas Neumayer, Angelika Berger and Eva Stifter
J. Clin. Med. 2024, 13(22), 6926; https://doi.org/10.3390/jcm13226926 (registering DOI) - 17 Nov 2024
Abstract
Retinopathy of prematurity (ROP) remains a major cause of childhood blindness. Its pooled prevalence worldwide is 31.9%, and that of severe ROP is 7.5% among prematurely born babies. Investigating risk factors is essential for improving early detection and treatment outcomes. Purpose: To [...] Read more.
Retinopathy of prematurity (ROP) remains a major cause of childhood blindness. Its pooled prevalence worldwide is 31.9%, and that of severe ROP is 7.5% among prematurely born babies. Investigating risk factors is essential for improving early detection and treatment outcomes. Purpose: To determine the frequency and stages of ROP cases and evaluate the treatment methods for premature infants at the Medical University of Vienna. Methods: In this retrospective study, 352 children who underwent ROP screening between 2018 and 2021 with a gestational age (GA) ≤ 32 weeks and/or a birth weight (BW) ≤ 1500 g were included. Results: ROP was found in 144 (40.9%) of the 352 screened premature infants, with 17 (4.8%) requiring treatment. Significant risk factors included GA and BW, while sex and pregnancy type were not significant. The mean GA was 27.7 ± 2.5 weeks, and the mean BW was 989.1 ± 359.7 g. Infants with ROP had a lower GA (25.9 ± 1.7 weeks) and BW (778.6 ± 262.4 g) than those without ROP (28.9 ± 2.2 weeks; 1134.9 ± 345.9 g). GA and BW were significantly lower in infants developing ROP (p < 0.001). Stage 2 ROP was the most common severity in 74 children (51.4%). Laser therapy was the most common first-line treatment, used in 11 infants (64.7%), followed by anti-VEGF therapy, used in 6 infants (35.3%). Children were treated within 1.0 ± 0.6 days on average. Of the 17 infants treated, 14 (82.4%) showed initial regression. Three infants (17.6%) required re-treatment: two with initial anti-VEGF therapy and one after laser therapy. Conclusions: The findings provide insights into ROP’s prevalence and treatment preferences at a university tertiary care center. GA and BW were confirmed to be significant predictors, aiding in early detection and informing treatment decisions. These insights will enable comparisons with similar studies and contribute to improved patient care. Full article
(This article belongs to the Section Ophthalmology)
15 pages, 3122 KiB  
Article
Fe3O4@SiO2-NH2 Functionalized Nanoparticles as a Potential Contrast Agent in Magnetic Resonance
by Brayan Stick Betin Bohorquez, Indry Milena Saavedra Gaona, Carlos Arturo Parra Vargas, Karina Vargas-Sánchez, Jahaziel Amaya, Mónica Losada-Barragán, Javier Rincón and Daniel Llamosa Pérez
Condens. Matter 2024, 9(4), 49; https://doi.org/10.3390/condmat9040049 (registering DOI) - 17 Nov 2024
Abstract
The present work proposes a method for the synthesis of a nanoparticle with a superparamagnetic Fe3O4 core coated with SiO2-NH2 by ultrasound-assisted coprecipitation. Additionally, the nanoparticle is functionalized with a microinflammation biomarker peptide, and its effects on [...] Read more.
The present work proposes a method for the synthesis of a nanoparticle with a superparamagnetic Fe3O4 core coated with SiO2-NH2 by ultrasound-assisted coprecipitation. Additionally, the nanoparticle is functionalized with a microinflammation biomarker peptide, and its effects on the viability of monkey kidney endothelial cells and the Vero cell line were evaluated. The main physicochemical properties of the nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray Photoemission Spectroscopy (XPS), a vibrating sample magnetometer (VSM), a field emission scanning electron, Scanning Electron Microscopy (SEM), and High-Resolution Transmission Electron Microscopy (HR-TEM). The results showed that the nanoparticles are spherical, with sizes smaller than 10 nm, with high thermal stability and superparamagnetic properties. They also demonstrated cell viability rates exceeding 85% through Magnetic Resonance Imaging (MRI). The results indicate the potential of these nanoparticles to be used as a contrast agent in magnetic resonance to detect mild brain lesions. Full article
Show Figures

Figure 1

14 pages, 1096 KiB  
Article
An Integrated Approach to Develop Innovative, Sustainable, and Effective Cosmetic Ingredients: The Case Report of Fatty-Acids-Enriched Wild Strawberry Waste Extract
by Marta Faggian, Silvia Lucchetti, Sara Ferrari, Gabriele De Nadai, Stefano Francescato, Giovanni Baratto, Nicola De Zordi, Silvia-Maria Stanic, Gregorio Peron, Stefania Sut, Alessandra Semenzato and Stefano Dall’Acqua
Appl. Sci. 2024, 14(22), 10603; https://doi.org/10.3390/app142210603 (registering DOI) - 17 Nov 2024
Abstract
The sourcing of raw materials with low environmental impact, e.g., “upcycled” ingredients from short supply chains, has currently become necessary, and agri-food waste represents a very attractive hub to produce innovative cosmetic extracts. In this paper, an integrated approach considering all the different [...] Read more.
The sourcing of raw materials with low environmental impact, e.g., “upcycled” ingredients from short supply chains, has currently become necessary, and agri-food waste represents a very attractive hub to produce innovative cosmetic extracts. In this paper, an integrated approach considering all the different steps, starting from material selection, extraction, chemical characterization, biological activity evaluation, and environmental impact calculation, was adopted to obtain innovative, sustainable, and effective cosmetic raw materials from food waste. As case report, a supercritical CO2 extract obtained from wild-strawberry-processing waste after jam production (WSWSCO2 extract) was developed. The fatty acids profile of the waste material and WSWSCO2 extract was investigated via a GC–MS method, and mainly polyunsaturated fatty acids (PUFAs) such as linoleic and linolenic acids were detected. Furthermore, the ability of the WSWSCO2 extract to inhibit 5α-reductase type 1 expression in skin fibroblasts was assessed, confirming significant efficacy at the dose of 5 mg/mL. Finally, in view of the eco-sustainability approach, the environmental impact related to WSWSCO2 extract was calculated using a life cycle assessment (LCA) analytical approach, considering different parameters and indicators (e.g., carbon footprint) and verifying the eco-friendly approach in extract development and production. Although further research is needed, for example, to check the full composition of the extract and its effect on skin cells, these results suggest that the WSWSCO2 extract may represent an innovative and sustainable ingredient for cosmetic applications especially in topical preparation for the treatment of some androgenic-related discomfort, such as acne and androgenic alopecia, reflecting the potentiality of the holistic and pioneering approach related to ingredient development presented in this study for the cosmetic sector. Full article
(This article belongs to the Special Issue Cosmetics Ingredients Research - 2nd Edition)
Show Figures

Figure 1

16 pages, 2398 KiB  
Article
Validating Ultra-Wideband Positioning System for Precision Cow Tracking in a Commercial Free-Stall Barn
by Ágnes Moravcsíková, Zuzana Vyskočilová, Pavel Šustr and Jitka Bartošová
Animals 2024, 14(22), 3307; https://doi.org/10.3390/ani14223307 (registering DOI) - 17 Nov 2024
Abstract
UWB positioning systems offer innovative solutions for precision monitoring dairy cow behaviour and social dynamics, yet their performance in complex commercial barn environments requires thorough validation. This study evaluated the TrackLab 2.13 (Noldus) UWB system in a dairy barn housing 44–49 cows. We [...] Read more.
UWB positioning systems offer innovative solutions for precision monitoring dairy cow behaviour and social dynamics, yet their performance in complex commercial barn environments requires thorough validation. This study evaluated the TrackLab 2.13 (Noldus) UWB system in a dairy barn housing 44–49 cows. We assessed stationary tag positioning using ten fixed tags over seven days, proximity detection between eight cows and ten stationary tags, and moving tag positioning using three tags on a stick to simulate cow movement. System performance varied by tag location, with reliability ranging from 4.09% to 96.73% and an overall mean accuracy of 0.126 ± 0.278 m for stationary tags. After the provider updated the software, only 0.62% of measures exceeded the declared accuracy of 0.30 m. Proximity detection between moving cows and stationary tags showed 81.42% accuracy within a 2-m range. While generally meeting specifications, spatial variations in accuracy and reliability were observed, particularly near barn perimeters. These findings highlight UWB technology’s potential for precision livestock farming, welfare assessment, and behaviour research, including social interactions and space use patterns. Results emphasise the need for careful system setup, regular updates, and context-aware data interpretation in commercial settings to maximise benefits in animal welfare monitoring. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

19 pages, 5717 KiB  
Article
Exploring the Biological Potential of Mountain Germander Polyphenolic Extract on Cellular Model Macromolecules, Human Cell Lines, and Microbiome Representatives
by Ana Mandura Jarić, Ksenija Durgo, Ana Huđek Turković, Petra Petek, Andrea Petrinić, Danijela Šeremet, Aleksandra Vojvodić Cebin and Draženka Komes
Appl. Sci. 2024, 14(22), 10602; https://doi.org/10.3390/app142210602 (registering DOI) - 17 Nov 2024
Abstract
In the context of revitalizing the use of traditional plant species as remarkable sources of bioactive compounds, the determination of their biological effects is of utmost importance. Among Lamiaceae species, Teucrium montanum (Mountain Germander) represents understudied Mediterranean plant species; it is rich in [...] Read more.
In the context of revitalizing the use of traditional plant species as remarkable sources of bioactive compounds, the determination of their biological effects is of utmost importance. Among Lamiaceae species, Teucrium montanum (Mountain Germander) represents understudied Mediterranean plant species; it is rich in polyphenols, which are well-studied biologically active compounds for human disease prevention and the reduction of oxidative stress, i.e., phenolic acids, phenylethanoid glycosides, and flavonoids. For that purpose, the aim of this study was to investigate the antioxidant, cytotoxic, and genotoxic effects of Mountain Germander (MG) polyphenolic extract (0.025, 0.050, 0.150, and 0.500 mg extract mL−1) on the hepatocellular (HepG2), tongue (CAL 27), gastric (AGS), and colorectal (Caco-2) continuous human cancer cell lines, as well as its bacteriostatic potential on representative members of human microbiota. In addition, the antioxidant potential of the MG polyphenolic extract was determined using bovine serum album and DNA plasmid as cellular model macromolecules. In vitro analysis revealed a significant cytotoxic effect of all MG extract concentrations on AGS and Caco-2 cell lines after prolonged treatment (24 h). In addition, treatment with 0.500 mg extract mL−1 showed the most pronounced antioxidant effect under prolonged treatment (24 h) on CAL 27 and HepG2 cell lines. All of the applied MG extract concentrations seem to have a genoprotective effect on DNA plasmid. Furthermore, a significant inhibitory effect on E. coli was detected upon the treatment with 0.150 mg extract mL−1, reducing the cell viability by 56%. Full article
(This article belongs to the Special Issue Natural Products and Bioactive Compounds)
Show Figures

Figure 1

45 pages, 3226 KiB  
Review
Exploring Plasmonic Standalone Surface-Enhanced Raman Scattering Nanoprobes for Multifaceted Applications in Biomedical, Food, and Environmental Fields
by Valentina Rojas Martínez, Eunseo Lee and Jeong-Wook Oh
Nanomaterials 2024, 14(22), 1839; https://doi.org/10.3390/nano14221839 (registering DOI) - 17 Nov 2024
Abstract
Surface-enhanced Raman scattering (SERS) is an innovative spectroscopic technique that amplifies the Raman signals of molecules adsorbed on rough metal surfaces, making it pivotal for single-molecule detection in complex biological and environmental matrices. This review aims to elucidate the design strategies and recent [...] Read more.
Surface-enhanced Raman scattering (SERS) is an innovative spectroscopic technique that amplifies the Raman signals of molecules adsorbed on rough metal surfaces, making it pivotal for single-molecule detection in complex biological and environmental matrices. This review aims to elucidate the design strategies and recent advancements in the application of standalone SERS nanoprobes, with a special focus on quantifiable SERS tags. We conducted a comprehensive analysis of the recent literature, focusing on the development of SERS nanoprobes that employ novel nanostructuring techniques to enhance signal reliability and quantification. Standalone SERS nanoprobes exhibit significant enhancements in sensitivity and specificity due to optimized hot spot generation and improved reporter molecule interactions. Recent innovations include the development of nanogap and core–satellite structures that enhance electromagnetic fields, which are crucial for SERS applications. Standalone SERS nanoprobes, particularly those utilizing indirect detection mechanisms, represent a significant advancement in the field. They hold potential for wide-ranging applications, from disease diagnostics to environmental monitoring, owing to their enhanced sensitivity and ability to operate under complex sample conditions. Full article
(This article belongs to the Special Issue Versatile Plasmonic Nanostructures for Biomedical Applications)
25 pages, 24009 KiB  
Article
Variations over 20 Years in Vegetation Dynamics and Its Coupled Responses to Individual and Compound Meteorological Drivers in Sichuan Province, China
by Qian Deng, Chenfeng Zhang, Jiong Dong, Yanchun Li, Yunyun Li, Yi Huang, Hongxue Zhang and Jingjing Fan
Atmosphere 2024, 15(11), 1384; https://doi.org/10.3390/atmos15111384 (registering DOI) - 17 Nov 2024
Abstract
This study presents an innovative investigation into the spatiotemporal dynamics of vegetation growth and its response to both individual and composite climatic factors. The Normalized Difference Vegetation Index (NDVI), derived from SPOT satellite remote sensing data, was employed as a proxy for vegetation [...] Read more.
This study presents an innovative investigation into the spatiotemporal dynamics of vegetation growth and its response to both individual and composite climatic factors. The Normalized Difference Vegetation Index (NDVI), derived from SPOT satellite remote sensing data, was employed as a proxy for vegetation growth. Multiple analytical methods, including the coefficient of variation, Mann–Kendall trend analysis, and Hurst index, were applied to characterize the spatiotemporal patterns of the NDVI in Sichuan Province from 2000 to 2020. The Standardized Precipitation Evapotranspiration Index (SPEI) was calculated using monthly precipitation and temperature data from 45 meteorological stations to examine the influence of composite climatic factors on vegetation growth, while the time lag effects between the NDVI and various climatic variables were also explored. Our findings unveil three key insights: (1) Vegetation coverage in Sichuan Province exhibited an overall increasing trend, with the highest NDVI values in summer and the lowest in winter. Significant NDVI fluctuations were observed in spring in the western Sichuan plateau and in winter in northern, eastern, and southern Sichuan. (2) A significant upward trend in the NDVI was detected across Sichuan Province, except for Chengdu Plain, where a downward trend prevailed outside the summer season. (3) On shorter time scales, the NDVI was positively correlated with precipitation, temperature, and the SPEI, with a one-month lag. The response of the NDVI to sunlight duration showed a two-month lag, with the weakest correlation and a five-month lag in western Sichuan. This research advances our understanding of the complex interactions between vegetation dynamics and climatic factors in Sichuan Province and provides valuable insights for predicting future vegetation growth trends. Full article
Show Figures

Figure 1

20 pages, 5464 KiB  
Article
Repeatome Analysis and Satellite DNA Chromosome Patterns in Hedysarum Species
by Olga Yu. Yurkevich, Tatiana E. Samatadze, Svyatoslav A. Zoshchuk, Alexey R. Semenov, Alexander I. Morozov, Inessa Yu. Selyutina, Alexandra V. Amosova and Olga V. Muravenko
Int. J. Mol. Sci. 2024, 25(22), 12340; https://doi.org/10.3390/ijms252212340 (registering DOI) - 17 Nov 2024
Abstract
Abstract: The cosmopolitan genus Hedysarum L. (Fabaceae) is divided into sections Hedysarum, Stracheya, and Multicaulia. This genus includes many valuable medicinal, melliferous, and forage species. The species taxonomy and genome relationships within the sections are still unclear. We examined intra- and [...] Read more.
Abstract: The cosmopolitan genus Hedysarum L. (Fabaceae) is divided into sections Hedysarum, Stracheya, and Multicaulia. This genus includes many valuable medicinal, melliferous, and forage species. The species taxonomy and genome relationships within the sections are still unclear. We examined intra- and interspecific diversity in the section (sect.) Hedysarum based on repeatome analyses using NGS data, bioinformatic technologies, and chromosome FISH mapping of 35S rDNA, 5S rDNA, and the identified satellite DNA families (satDNAs). A comparison of repeatomes of H. alpinum, H. theinum, and H. flavescens revealed differences in their composition. However, similarity in sequences of most satDNAs indicated a close relationship between genomes within sect. Hedysarum. New effective satDNA chromosomal markers were detected, which is important for karyotype analyses within Hedysarum. Intra- and interspecific variability in the chromosomal distribution patterns of the studied markers were revealed, and species karyograms were constructed. These results provided new insight into the karyotype structures and genomic diversity within sect. Hedysarum, clarified the systematic position of H. sachalinense and H. arcticum, and confirmed the distant genomic relationships between species from sections Hedysarum and Multicaulia. Our findings are important for further comparative genome studies within the genus Hedysarum. Full article
(This article belongs to the Special Issue Plant Phylogenomics and Genetic Diversity (2nd Edition))
19 pages, 15576 KiB  
Article
IPEC-J2 Autophagy Induced by TLR4 and NSP6 Interactions Facilitate Porcine Epidemic Diarrhea Virus Replication
by Haiyuan Zhao, Dianzhong Zheng, Qinyuan Chang, Hailin Zhang, Yilan Shao, Jiaxuan Li, Wen Cui, Yanping Jiang, Lijie Tang, Yijing Li and Xiaona Wang
Viruses 2024, 16(11), 1787; https://doi.org/10.3390/v16111787 (registering DOI) - 17 Nov 2024
Abstract
Autophagy is an important cellular response against intracellular pathogens. However, some viruses have evolved mechanisms to hijack this defensive process to provide favorable conditions for virus replication in host cells. The porcine epidemic diarrhea virus (PEDV) has been shown to alter autophagy pathways; [...] Read more.
Autophagy is an important cellular response against intracellular pathogens. However, some viruses have evolved mechanisms to hijack this defensive process to provide favorable conditions for virus replication in host cells. The porcine epidemic diarrhea virus (PEDV) has been shown to alter autophagy pathways; however, it is still unknown through which receptors PEDV induces autophagy in IPEC-J2 cells, whether autophagy facilitates PEDV replication, and which functional domains of PEDV proteins are primarily responsible for inducing autophagy. Here, we found that PEDV infection induces autophagy in host cells via distinct and uncoupled molecular pathways. RNA-seq technology was used to analyze the expression patterns of intracellular genes in PEDV-infected IPEC-J2 cells using transcriptomics. The results demonstrate that PEDV triggers autophagy via the cellular pathogen receptor TLR4 and the AKT-mTOR pathway. As evidenced by autophagosome detection, PEDV infection increases autophagosomes and light chain 3 (LC3)-II as well as downregulated AKT-mTOR phosphorylation. Our study revealed that the binding of the viral protein NSP61-2C (56-151aa) to TLR4 triggers autophagy and inactivates the AKT-mTOR pathway, both of which are critical for facilitating PEDV infection. Through screening and analysis, TLR4 was found to be a key gene involved in PEDV-induced autophagy. The screening of the key functional domains of NSP6 (56-151aa) for their ability to induce autophagy in IPEC-J2 cells provided a basis for the in-depth analysis of the pathogenic mechanism of PEDV infection-induced autophagy and promotion of self-replication and also provided an important target for the study of PEDV antiviral drugs. In conclusion, we elucidated that the PEDV infection of IPEC-J2 cells could induce autophagy and found that PEDV could use autophagy to promote its own replication. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

20 pages, 4173 KiB  
Article
Morpho-Molecular and Genomic Characterization of Penicillium mexicanum Isolates Retrieved from a Forsaken Gold Mine
by João Trovão, Fabiana Soares, Diana Sofia Paiva and António Portugal
Appl. Sci. 2024, 14(22), 10600; https://doi.org/10.3390/app142210600 (registering DOI) - 17 Nov 2024
Abstract
During the ongoing studies designed to examine the fungal diversity present within the abandoned and flooded Escádia Grande gold mine (Góis, Portugal), we repeatedly isolated several specimens belonging to a Penicillium species. Molecular phylogenetic analysis, coupled with morphological observations, positioned this fungus within [...] Read more.
During the ongoing studies designed to examine the fungal diversity present within the abandoned and flooded Escádia Grande gold mine (Góis, Portugal), we repeatedly isolated several specimens belonging to a Penicillium species. Molecular phylogenetic analysis, coupled with morphological observations, positioned this fungus within subgen. Penicillium sect. Paradoxa, series Atramentosa, pinpointing its identity as Penicillium mexicanum (the first record for mining soils and the country). Given the limited research conducted on Penicillia isolated from similar environments, the species genome was sequenced utilizing the Oxford Nanopore® MinION methodology and studied through bioinformatic analysis. The obtained genome has a size of 29.62 Mb, containing a 47.72% GC content, 10,156 genes, with 44 rRNAs and 178 tRNAs/tmRNAs, providing the first genomic resource for this microorganism. Bioinformatic analysis allowed us to identify multiple genomic traits that can contribute towards this species survival in these extreme environments, including the presence of high levels of major facilitator transporters (MFS), Zn (2)-C6 fungal-type DNA-binding domains, P-loop containing nucleoside triphosphate hydrolases, specific fungal transcription factors and sugar transporters. Furthermore, putative advantageous metabolic traits, such as methylotrophy, assimilatory nitrate and sulfate reduction abilities, were also detected. In addition, the results also highlighted a strong genomic and metabolic organization and investment towards arsenic detoxification (transport and oxidation). Lastly, thirty-two putative biosynthetic gene clusters were predicted, including some with high similarity values to monascorubrin, nidulanin A, histidyltryptophanyldiketopiperazine/dehydrohistidyltryptophanyldiketopiperazine/roquefortine D/roquefortine C/glandicoline A/glandicoline B/meleagrine, YWA1 and choline. Overall, this study expands the current Penicillia knowledge from mining environments while also enhancing our understanding regarding fungal arsenic resistance. Full article
(This article belongs to the Special Issue Advances in Environmental and Applied Mycology)
27 pages, 6680 KiB  
Review
Extracellular Vesicles: A Novel Diagnostic Tool and Potential Therapeutic Approach for Equine Osteoarthritis
by Mohamed I. Elashry, Julia Speer, Isabelle De Marco, Michele C. Klymiuk, Sabine Wenisch and Stefan Arnhold
Curr. Issues Mol. Biol. 2024, 46(11), 13078-13104; https://doi.org/10.3390/cimb46110780 (registering DOI) - 17 Nov 2024
Abstract
Osteoarthritis (OA) is a chronic progressive degenerative joint disease that affects a significant portion of the equine population and humans worldwide. Current treatment options for equine OA are limited and incompletely curative. Horses provide an excellent large-animal model for studying human OA. Recent [...] Read more.
Osteoarthritis (OA) is a chronic progressive degenerative joint disease that affects a significant portion of the equine population and humans worldwide. Current treatment options for equine OA are limited and incompletely curative. Horses provide an excellent large-animal model for studying human OA. Recent advances in the field of regenerative medicine have led to the exploration of extracellular vesicles (EVs)—cargoes of microRNA, proteins, lipids, and nucleic acids—to evaluate their diagnostic value in terms of disease progression and severity, as well as a potential cell-free therapeutic approach for equine OA. EVs transmit molecular signals that influence various biological processes, including the inflammatory response, apoptosis, proliferation, and cell communication. In the present review, we summarize recent advances in the isolation and identification of EVs, the use of their biologically active components as biomarkers, and the distribution of the gap junction protein connexin 43. Moreover, we highlight the role of mesenchymal stem cell-derived EVs as a potential therapeutic tool for equine musculoskeletal disorders. This review aims to provide a comprehensive overview of the current understanding of the pathogenesis, diagnosis, and treatment strategies for OA. In particular, the roles of EVs as biomarkers in synovial fluid, chondrocytes, and plasma for the early detection of equine OA are discussed. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Biology 2024)
Show Figures

Graphical abstract

15 pages, 1463 KiB  
Article
Integration of FTIR Spectroscopy, Volatile Compound Profiling, and Chemometric Techniques for Advanced Geographical and Varietal Analysis of Moroccan Eucalyptus Essential Oils
by Aimen El Orche, Abdennacer El Mrabet, Amal Ait Haj Said, Soumaya Mousannif, Omar Elhamdaoui, Siddique Akber Ansari, Hamad M. Alkahtani, Shoeb Anwar Ansari, Ibrahim Sbai El Otmani and Mustapha Bouatia
Sensors 2024, 24(22), 7337; https://doi.org/10.3390/s24227337 (registering DOI) - 17 Nov 2024
Abstract
Eucalyptus essential oil is widely valued for its therapeutic properties and extensive commercial applications, with its chemical composition significantly influenced by species variety, geographical origin, and environmental conditions. This study aims to develop a reliable method for identifying the geographical origin and variety [...] Read more.
Eucalyptus essential oil is widely valued for its therapeutic properties and extensive commercial applications, with its chemical composition significantly influenced by species variety, geographical origin, and environmental conditions. This study aims to develop a reliable method for identifying the geographical origin and variety of eucalyptus oil samples through the application of advanced analytical techniques combined with chemometric methods. Essential oils from Eucalyptus globulus and Eucalyptus camaldulensis were analyzed using Gas Chromatography–Flame Ionization Detection (GC–FID) and Fourier Transform Infrared (FTIR) Spectroscopy. Chemometric analyses, including Orthogonal Partial Least Squares-Discriminant Analysis (O2PLS-DA) and Hierarchical Cluster Analysis (HCA), were utilized to classify the oils based on their volatile compound profiles. Notably, O2PLS-DA was applied directly to the raw FTIR data without additional spectral processing, showcasing its robustness in handling unprocessed data. For geographical origin determination, the GC–FID model achieved a Correct Classification Rate (CCR) of 100%, with 100% specificity and 100% sensitivity for both calibration and validation sets. FTIR spectroscopy achieved a CCR of 100%, specificity of 100%, and sensitivity of 100% for the calibration set, while the validation set yielded a CCR of 95.83%, specificity of 99.02%, and sensitivity of 94.44%. In contrast, the analysis based on species variety demonstrated 100% accuracy across all metrics CCR, specificity, and sensitivity—for both calibration and validation using both techniques. These findings underscore the effectiveness of volatile and infrared spectroscopy profiling for quality control and authentication, providing robust tools for ensuring the consistency and reliability of eucalyptus essential oils in various industrial and therapeutic applications. Full article
Show Figures

Figure 1

Back to TopTop