(Translated by https://www.hiragana.jp/)
MDPI - Publisher of Open Access Journals
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (67,545)

Search Parameters:
Keywords = metabolism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 2977 KiB  
Systematic Review
Influence of Carbohydrate Intake on Caprylic Acid (C8:0)-Induced Ketogenesis—A Systematic Review and Meta-Analysis
by Marius Frenser, Tobias Fischer, Isabel Albrecht and Thorsten Marquardt
Nutrients 2024, 16(15), 2456; https://doi.org/10.3390/nu16152456 (registering DOI) - 29 Jul 2024
Abstract
The ketogenic diet is used worldwide to treat various diseases, especially drug-resistant epilepsies. Medium-chain triglycerides or medium-chain fatty acids, primarily the major ketogenic compound caprylic acid (C8; C8:0), can significantly support ketogenesis. This review examines the effects of concurrent carbohydrate intake on C8-induced [...] Read more.
The ketogenic diet is used worldwide to treat various diseases, especially drug-resistant epilepsies. Medium-chain triglycerides or medium-chain fatty acids, primarily the major ketogenic compound caprylic acid (C8; C8:0), can significantly support ketogenesis. This review examines the effects of concurrent carbohydrate intake on C8-induced ketogenesis. A systematic literature search (PubMed and Web of Science) with subsequent data extraction was performed according to PRISMA guidelines and the Cochrane Handbook. Studies investigating the metabolic response to C8-containing MCT interventions with carbohydrate intake were included. The studies did not include a ketogenic diet. Three intervention groups were created. The quality of the studies was assessed using the RoB II tool, and the meta-analysis was performed using the Cochrane RevMan software. A total of 7 trials, including 4 RCTs, met the inclusion criteria. Ketone production was lower when C8 was combined with carbohydrates compared to MCT intake alone. The lower C8 dose group (11 g) did not show a significantly lower ketogenic effect than the higher dose group (19 g). Forest plot analysis showed heterogeneous data. The data suggest a non-linear relationship between C8, carbohydrate intake and ketone production. Further studies are needed to investigate the influence of different carbohydrates on C8-induced ketogenesis. Limitations include heterogeneous intervention conditions, such as different types of dispersions, caffeine intake, limited number of studies and variability in study design. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

18 pages, 3081 KiB  
Article
A Synergistic Indole-3-Acetic Acid-Producing Synthetic Bacterial Consortium Benefits Walnut Seedling Growth
by Qi Cheng, Shanshan Sun, Xin Ning, Minhang Qiao, Wenxuan Chen, Pengrui Zhang, Kai Liu and Yanqin Ding
Agronomy 2024, 14(8), 1657; https://doi.org/10.3390/agronomy14081657 (registering DOI) - 28 Jul 2024
Abstract
Synthetic microbial communities (SynComs) have been shown to be an ecofriendly alternative for promoting plant growth. However, the mechanisms by which SynCom inoculants drive plant growth promotion in rhizosphere soil are still not fully explored. Herein, we designed a three-strain consortium based on [...] Read more.
Synthetic microbial communities (SynComs) have been shown to be an ecofriendly alternative for promoting plant growth. However, the mechanisms by which SynCom inoculants drive plant growth promotion in rhizosphere soil are still not fully explored. Herein, we designed a three-strain consortium based on the biocompatibility among strains and indole-3-acetic acid (IAA) production. The consortium containing Bacillus safensis 5-49, Bacillus stratosphericus 5-54, and Bacillus halotolerans 6-30 possessed a synergistic effect on IAA production and biofilm formation. Genetic analysis suggested that IAA was synthesized through tryptophan-dependent pathways in the strains. The consortium outperformed the plant growth-promoting effect observed with single strains, showing an increase in walnut (Juglans regia) seedling dry weight by 92.3% over the non-inoculated plants after 60 days of cultivation. This effect was underpinned by the synergistic interactions of the consortium, which was evidenced by the significantly increased relative abundance of Bacillus and tryptophan metabolism-associated genes in the rhizosphere of consortium-inoculated plants. Meanwhile, the consortium increased the relative abundance of indigenous Pseudomonas in rhizosphere soil, providing a synergistic effect on improving soil enzyme activities and thus available nutrients. The available N, P, and K contents in the consortium-inoculated plant rhizosphere were 3.77–28.4% higher than those in non-inoculated samples. This work provided an efficient bacterial consortium and proposed the mode of action by which this consortium improved plant growth and soil fertility. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
25 pages, 1158 KiB  
Review
Roles of Sirtuins in Hearing Protection
by Chail Koo, Claus-Peter Richter and Xiaodong Tan
Pharmaceuticals 2024, 17(8), 998; https://doi.org/10.3390/ph17080998 (registering DOI) - 28 Jul 2024
Abstract
Hearing loss is a health crisis that affects more than 60 million Americans. Currently, sodium thiosulfate is the only drug approved by the Food and Drug Administration (FDA) to counter hearing loss. Sirtuins were proposed as therapeutic targets in the search for new [...] Read more.
Hearing loss is a health crisis that affects more than 60 million Americans. Currently, sodium thiosulfate is the only drug approved by the Food and Drug Administration (FDA) to counter hearing loss. Sirtuins were proposed as therapeutic targets in the search for new compounds or drugs to prevent or cure age-, noise-, or drug-induced hearing loss. Sirtuins are proteins involved in metabolic regulation with the potential to ameliorate sensorineural hearing loss. The mammalian sirtuin family includes seven members, SIRT1-7. This paper is a literature review on the sirtuins and their protective roles in sensorineural hearing loss. Literature search on the NCBI PubMed database and NUsearch included the keywords ‘sirtuin’ and ‘hearing’. Studies on sirtuins without relevance to hearing and studies on hearing without relevance to sirtuins were excluded. Only primary research articles with data on sirtuin expression and physiologic auditory tests were considered. The literature review identified 183 records on sirtuins and hearing. After removing duplicates, eighty-one records remained. After screening for eligibility criteria, there were forty-eight primary research articles with statistically significant data relevant to sirtuins and hearing. Overall, SIRT1 (n = 29) was the most studied sirtuin paralog. Over the last two decades, research on sirtuins and hearing has largely focused on age-, noise-, and drug-induced hearing loss. Past and current studies highlight the role of sirtuins as a mediator of redox homeostasis. However, more studies need to be conducted on the involvement of SIRT2 and SIRT4-7 in hearing protection. Full article
18 pages, 2995 KiB  
Article
D-Limonene Inhibits Pichia kluyveri Y-11519 in Sichuan Pickles by Disrupting Metabolism
by Chaoyi Zeng, Yue Sun, Haoran Lin, Ziyu Li, Qing Zhang, Ting Cai, Wenliang Xiang, Jie Tang and Patchanee Yasurin
Molecules 2024, 29(15), 3561; https://doi.org/10.3390/molecules29153561 (registering DOI) - 28 Jul 2024
Abstract
The Pichia kluyveri, a proliferation commonly found in Sichuan pickles (SCPs), can accelerate the growth and reproduction of spoilage bacteria, causing off-odor development and decay. Although D-limonene, a common natural preservative, effectively restricts P. kluyveri, its inhibitory mechanism remains unclear. This [...] Read more.
The Pichia kluyveri, a proliferation commonly found in Sichuan pickles (SCPs), can accelerate the growth and reproduction of spoilage bacteria, causing off-odor development and decay. Although D-limonene, a common natural preservative, effectively restricts P. kluyveri, its inhibitory mechanism remains unclear. This study aimed to elucidate this molecular mechanism by investigating the impact on basic P. kluyveri metabolism. The findings revealed that D-limonene inhibited P. kluyveri growth and disrupted the transcription of the genes responsible for encoding the enzymes involved in cell wall and membrane synthesis, oxidative phosphorylation, glycolysis, and the tricarboxylic acid (TCA) cycle pathway. The results indicated that these events disrupted crucial metabolism such as cell wall and membrane integrity, adenosine triphosphate (ATP) synthesis, and reactive oxygen species (ROS) balance. These insights provided a comprehensive understanding of the inhibitory effect of D-limonene on the growth and reproduction of P. kluyveri while highlighting its potential application in the SCP industry. Full article
11 pages, 712 KiB  
Article
Effect of Supplementation of a Butyrate-Based Formula in Individuals with Liver Steatosis and Metabolic Syndrome: A Randomized Double-Blind Placebo-Controlled Clinical Trial
by Federica Fogacci, Marina Giovannini, Valentina Di Micoli, Elisa Grandi, Claudio Borghi and Arrigo Francesco Giuseppe Cicero
Nutrients 2024, 16(15), 2454; https://doi.org/10.3390/nu16152454 (registering DOI) - 28 Jul 2024
Abstract
Postbiotics could exert different metabolic activities in animal models of non-alcoholic fatty liver disease (NAFLD) and in humans affected by metabolic syndrome. This is a randomized, double-blind, placebo-controlled, parallel-group clinical trial that enrolled a sample of 50 Caucasian healthy individuals with NAFLD, defined [...] Read more.
Postbiotics could exert different metabolic activities in animal models of non-alcoholic fatty liver disease (NAFLD) and in humans affected by metabolic syndrome. This is a randomized, double-blind, placebo-controlled, parallel-group clinical trial that enrolled a sample of 50 Caucasian healthy individuals with NAFLD, defined as liver steatosis, and metabolic syndrome. After a 4-week run-in, the enrolled individuals were randomized to take a food for special medical purposes with functional release, one tablet a day, containing calcium butyrate (500 mg/tablet), zinc gluconate (zinc 5 mg/tablet), and vitamin D3 (500 IU/tablet), or an identical placebo for 3 months. Liver and metabolic parameters were measured at baseline and at the end of the study. No subject experienced any adverse events during the trial. In both groups, a significant decrease in total cholesterol (TC) and triglycerides (TG) plasma levels was observed at the randomization visit vs. pre-run-in visit (p < 0.05). Regarding liver parameters, after treatment, the fatty liver index (FLI) improved significantly vs. baseline values (p < 0.05) and vs. placebo group (p < 0.05) in the active treatment group, and the hepatic steatosis index (HSI) improved significantly vs. baseline values (p < 0.05). Moreover, after active treatment, TC, TG, and gamma-glutamyl transferase (gGT) improved significantly vs. baseline values (p < 0.05), and TC and TG improved vs. placebo group (p < 0.05), as well. In the placebo group, liver parameters remained unchanged after treatment; only TG improved significantly vs. baseline values (p < 0.05). In our study, we observed that the butyrate-based formula improved FLI and plasma lipid patterns in individuals affected by liver steatosis and metabolic syndrome. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

12 pages, 3194 KiB  
Review
Efficacy and Safety of Honey Dressings in the Management of Chronic Wounds: An Updated Systematic Review and Meta-Analysis
by Ying Tang, Lihong Chen and Xingwu Ran
Nutrients 2024, 16(15), 2455; https://doi.org/10.3390/nu16152455 (registering DOI) - 28 Jul 2024
Abstract
Chronic wounds impose a substantial economic burden on healthcare systems and result in decreased productivity. Honey possesses diverse properties, rendering it a promising, cost-effective, and efficacious intervention strategy for the management of chronic wounds. However, the findings are controversial. We have presented an [...] Read more.
Chronic wounds impose a substantial economic burden on healthcare systems and result in decreased productivity. Honey possesses diverse properties, rendering it a promising, cost-effective, and efficacious intervention strategy for the management of chronic wounds. However, the findings are controversial. We have presented an updated and comprehensive systematic review and meta-analysis to evaluate the efficacy and safety of honey dressings in the management of chronic wounds. Nine electronic databases were systematically searched to identify relevant studies published prior to 22 March 2024. A total of eight studies, including 906 individuals that met the inclusion criteria, were incorporated. The findings demonstrated a significant acceleration in wound healing time with honey dressings (MD = −17.13, 95% CI −26.37 to −7.89, p = 0.0003) and an increase in the percentage of wound healing (MD = 18.31, 95% CI 8.86 to 27.76, p = 0.0001). No statistically significant differences were observed in the healing rate (RR = 2.00, 95% CI 0.78 to 5.10, p = 0.15), clearance time of bacteria (MD = −11.36, 95% CI: −25.91 to 3.18, p = 0.13) and hospital stay duration. Honey may decrease the VAS score but may increase the incidence of painful discomfort during treatment. The topical application of honey is an effective therapeutic approach for managing chronic wounds, but the quality of the evidence was very low due to the quality of risk of bias, inconsistency, and publication bias, highlighting the necessity for larger-scale studies with adequately powered RCTs to ensure the safety and efficacy of honey dressings in chronic wound healing. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

14 pages, 11550 KiB  
Article
Identification and Characterization of miRNAs and lncRNAs Associated with Salinity Stress in Rice Panicles
by Conghui Jiang, Yulong Wang, Yanan He, Yongbin Peng, Lixia Xie, Yaping Li, Wei Sun, Jinjun Zhou, Chongke Zheng and Xianzhi Xie
Int. J. Mol. Sci. 2024, 25(15), 8247; https://doi.org/10.3390/ijms25158247 (registering DOI) - 28 Jul 2024
Abstract
Salinity is a common abiotic stress that limits crop productivity. Although there is a wealth of evidence suggesting that miRNA and lncRNA play important roles in the response to salinity in rice seedlings and reproductive stages, the mechanism by which competing endogenous RNAs [...] Read more.
Salinity is a common abiotic stress that limits crop productivity. Although there is a wealth of evidence suggesting that miRNA and lncRNA play important roles in the response to salinity in rice seedlings and reproductive stages, the mechanism by which competing endogenous RNAs (ceRNAs) influence salt tolerance and yield in rice has been rarely reported. In this study, we conducted full whole-transcriptome sequencing of rice panicles during the reproductive period to clarify the role of ceRNAs in the salt stress response and yield. A total of 214 lncRNAs, 79 miRNAs, and 584 mRNAs were identified as differentially expressed RNAs under salt stress. Functional analysis indicates that they play important roles in GO terms such as response to stress, biosynthesis processes, abiotic stimuli, endogenous stimulus, and response to stimulus, as well as in KEGG pathways such as secondary metabolite biosynthesis, carotenoid biosynthesis, metabolic pathways, and phenylpropanoid biosynthesis. A ceRNA network comprising 95 lncRNA–miRNA–mRNA triplets was constructed. Two lncRNAs, MSTRG.51634.2 and MSTRG.48576.1, were predicted to bind to osa-miR172d-5p to regulate the expression of OsMYB2 and OsMADS63, which have been reported to affect salt tolerance and yield, respectively. Three lncRNAs, MSTRG.30876.1, MSTRG.44567.1, and MSTRG.49308.1, may bind to osa-miR5487 to further regulate the expression of a stress protein (LOC_Os07g48460) and an aquaporin protein (LOC_Os02g51110) to regulate the salt stress response. This study is helpful for understanding the underlying molecular mechanisms of ceRNA that drive the response of rice to salt stress and provide new genetic resources for salt-resistant rice breeding. Full article
Show Figures

Figure 1

17 pages, 5733 KiB  
Article
Transcriptomic and Metabolomic Analyses Reveal Molecular Regulatory Networks for Pigmentation Deposition in Sheep
by Mancheng Zhang, Xiaoli Xu, Yuan Chen, Chengqi Wei, Siyuan Zhan, Jiaxue Cao, Jiazhong Guo, Dinghui Dai, Linjie Wang, Tao Zhong, Hongping Zhang and Li Li
Int. J. Mol. Sci. 2024, 25(15), 8248; https://doi.org/10.3390/ijms25158248 (registering DOI) - 28 Jul 2024
Abstract
Domestic animals have multiple phenotypes of skin and coat color, which arise from different genes and their products, such as proteins and metabolites responsible with melanin deposition. However, the complex regulatory network of melanin synthesis remains to be fully unraveled. Here, the skin [...] Read more.
Domestic animals have multiple phenotypes of skin and coat color, which arise from different genes and their products, such as proteins and metabolites responsible with melanin deposition. However, the complex regulatory network of melanin synthesis remains to be fully unraveled. Here, the skin and tongue tissues of Liangshan black sheep (black group) and Liangshan semi-fine-wool sheep (pink group) were collected, stained with hematoxylin–eosin (HE) and Masson–Fontana, and the transcriptomic and metabolomic data were further analyzed. We found a large deposit of melanin granules in the epidermis of the black skin and tongue. Transcriptome and metabolome analysis identified 744 differentially expressed genes (DEGs) and 443 differentially expressed metabolites (DEMs) between the pink and black groups. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses revealed the DEGs and DEMs were mainly enriched in the pathways of secondary metabolic processes, melanin biosynthesis processes, melanin metabolism processes, melanosome membranes, pigment granule membranes, melanosome, tyrosine metabolism, and melanogenesis. Notably, we revealed the gene ENSARG00020006042 may be a family member of YWHAs and involved in regulating melanin deposition. Furthermore, several essential genes (TYR, TYRP1, DCT, PMEL, MLANA, SLC45A2) were significantly associated with metabolite prostaglandins and compounds involved in sheep pigmentation. These findings provide new evidence of the strong correlation between prostaglandins and related compounds and key genes that regulate sheep melanin synthesis, furthering our understanding of the regulatory mechanisms and molecular breeding of pigmentation in sheep. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

27 pages, 4531 KiB  
Article
Exploring Gut Microbiota in Red Palm Weevil (Rhynchophorus ferrugineus): Effects on Pest Management, Pesticide Resistance, and Thermal Stress Tolerance
by Omnia Abdullah Elkraly, Tahany Abd Elrahman, Mona Awad, Hassan Mohamed El-Saadany, Mohamed A. M. Atia, Noura S. Dosoky, El-Desoky S. Ibrahim and Sherif M. Elnagdy
Microbiol. Res. 2024, 15(3), 1359-1385; https://doi.org/10.3390/microbiolres15030092 (registering DOI) - 28 Jul 2024
Abstract
The red palm weevil (RPW), Rhynchophorus ferrugineus, poses a significant threat to date palms globally, heavily relying on symbiotic microbes for various physiological and behavioral functions. This comprehensive study delves into the intricate dynamics of RPW gut microbiota, revealing a diverse microbial [...] Read more.
The red palm weevil (RPW), Rhynchophorus ferrugineus, poses a significant threat to date palms globally, heavily relying on symbiotic microbes for various physiological and behavioral functions. This comprehensive study delves into the intricate dynamics of RPW gut microbiota, revealing a diverse microbial community consisting of seven genera and eight species from Proteobacteria, Firmicutes, and Actinobacteria. The stability of gut bacteria across different life stages was observed, with notable impacts on larval metabolism attributed to shifts in bacterial composition. Bacillus subtilis emerged as a key player, producing a spectrum of metabolic enzymes. Furthermore, the gut bacteria exhibited remarkable pesticide degradation capabilities, suggesting a potential role in the host’s resistance to pesticides. The Arthrobacter sp. was identified as a promising candidate for eco-friendly pest biocontrol and biodegradation strategies. Investigating the influence of thermal stress on two groups of RPW larvae (conventional-fed and antibiotic-fed) at varying temperatures (15, 27, and 35 °C) unveiled potential survival implications. This study highlights the pivotal role of bacterial symbionts in enabling larvae adaptation and thermal stress tolerance. In essence, this research contributes crucial insights into the diversity and functions of RPW gut bacteria, emphasizing their prospective applications in pest control strategies. Full article
Show Figures

Figure 1

12 pages, 596 KiB  
Review
Digital Biometry as an Obesity Diagnosis Tool: A Review of Current Applications and Future Directions
by Florence Porterfield, Vladyslav Shapoval, Jérémie Langlet, Hanen Samouda and Fatima Cody Stanford
Life 2024, 14(8), 947; https://doi.org/10.3390/life14080947 (registering DOI) - 28 Jul 2024
Abstract
Obesity is a chronic relapsing disease and a major public health concern due to its high prevalence and associated complications. Paradoxically, several studies have found that obesity might positively impact the prognosis of patients with certain existing chronic diseases, while some individuals with [...] Read more.
Obesity is a chronic relapsing disease and a major public health concern due to its high prevalence and associated complications. Paradoxically, several studies have found that obesity might positively impact the prognosis of patients with certain existing chronic diseases, while some individuals with normal BMI may develop obesity-related complications. This phenomenon might be explained by differences in body composition, such as visceral adipose tissue (VAT), total body fat (TBF), and fat-free mass (FFM). Indirect measures of body composition such as body circumferences, skinfold thicknesses, and bioelectrical impedance analysis (BIA) devices are useful clinically and in epidemiological studies but are often difficult to perform, time-consuming, or inaccurate. Biomedical imaging methods, i.e., computerized tomography scanners (CT scan), dual-energy X-ray absorptiometry (DEXA), and magnetic resonance imaging (MRI), provide accurate assessments but are expensive and not readily available. Recent advancements in 3D optical image technology offer an innovative way to assess body circumferences and body composition, though most machines are costly and not widely available. Two-dimensional optical image technology might offer an interesting alternative, but its accuracy needs validation. This review aims to evaluate the efficacy of 2D and 3D automated body scan devices in assessing body circumferences and body composition. Full article
Show Figures

Figure 1

35 pages, 20176 KiB  
Review
Skin Aging and the Upcoming Role of Ferroptosis in Geroscience
by Rita Rezzani, Gaia Favero, Giorgia Cominelli, Daniela Pinto and Fabio Rinaldi
Int. J. Mol. Sci. 2024, 25(15), 8238; https://doi.org/10.3390/ijms25158238 (registering DOI) - 28 Jul 2024
Abstract
The skin is considered the most important organ system in mammals, and as the population ages, it is important to consider skin aging and anti-aging therapeutic strategies. Exposure of the skin to various insults induces significant changes throughout our lives, differentiating the skin [...] Read more.
The skin is considered the most important organ system in mammals, and as the population ages, it is important to consider skin aging and anti-aging therapeutic strategies. Exposure of the skin to various insults induces significant changes throughout our lives, differentiating the skin of a young adult from that of an older adult. These changes are caused by a combination of intrinsic and extrinsic aging. We report the interactions between skin aging and its metabolism, showing that the network is due to several factors. For example, iron is an important nutrient for humans, but its level increases with aging, inducing deleterious effects on cellular functions. Recently, it was discovered that ferroptosis, or iron-dependent cell death, is linked to aging and skin diseases. The pursuit of new molecular targets for ferroptosis has recently attracted attention. Prevention of ferroptosis is an effective therapeutic strategy for the treatment of diseases, especially in old age. However, the pathological and biological mechanisms underlying ferroptosis are still not fully understood, especially in skin diseases such as melanoma and autoimmune diseases. Only a few basic studies on regulated cell death exist, and the challenge is to turn the studies into clinical applications. Full article
(This article belongs to the Special Issue Dermatology: Advances in Pathophysiology and Therapies (2nd Edition))
Show Figures

Figure 1

25 pages, 4181 KiB  
Review
Examining the Correlation between the Inorganic Nano-Fertilizer Physical Properties and Their Impact on Crop Performance and Nutrient Uptake Efficiency
by Nothando Clementine Madlala, Nokuthula Khanyile and Absalom Masenya
Nanomaterials 2024, 14(15), 1263; https://doi.org/10.3390/nano14151263 (registering DOI) - 28 Jul 2024
Abstract
The physical properties of nano-fertilizers (NFs) are important in determining their performance, efficacy, and environmental interactions. Nano-fertilizers, due to their small size and high surface area-to-volume ratio, enhance plant metabolic reactions, resulting in higher crop yields. The properties of nano-fertilizers depend on the [...] Read more.
The physical properties of nano-fertilizers (NFs) are important in determining their performance, efficacy, and environmental interactions. Nano-fertilizers, due to their small size and high surface area-to-volume ratio, enhance plant metabolic reactions, resulting in higher crop yields. The properties of nano-fertilizers depend on the synthesis methods used. The nanoparticle’s nutrient use efficiency (NUE) varies among plant species. This review aims to analyze the relationship between the physical properties of NF and their influence on crop performance and nutrient uptake efficiency. The review focuses on the physical properties of NFs, specifically their size, shape, crystallinity, and agglomeration. This review found that smaller particle-sized nanoparticles exhibit higher nutrient use efficiency than larger particles. Nano-fertilizer-coated additives gradually release nutrients, reducing the need for frequent application and addressing limitations associated with chemical fertilizer utilization. The shapes of nano-fertilizers have varying effects on the overall performance of plants. The crystalline structure of nanoparticles promotes a slow release of nutrients. Amorphous nano-fertilizers improve the NUE and, ultimately, crop yield. Agglomeration results in nanoparticles losing their nanoscale size, accumulating on the outer surface, and becoming unavailable to plants. Understanding the physical properties of nano-fertilizers is crucial for optimizing their performance in agricultural applications. Full article
Show Figures

Graphical abstract

19 pages, 1086 KiB  
Article
Sonographic Features of Rectus Femoris Muscle in Patients with Metabolic Dysfunction-Associated Fatty Liver Disease and Their Correlation with Body Composition Parameters and Muscle Strength: Results of a Single-Center Cross-Sectional Study
by Anna F. Sheptulina, Adel A. Yafarova, Elvira M. Mamutova and Oxana M. Drapkina
Biomedicines 2024, 12(8), 1684; https://doi.org/10.3390/biomedicines12081684 (registering DOI) - 28 Jul 2024
Abstract
This study aimed to describe sonographic features of rectus femoris muscle (RFM) in patients with metabolic dysfunction-associated fatty liver disease (MASLD) and their correlation with body composition parameters and muscle strength. A total of 67 patients with MASLD underwent dual-energy X-ray absorptiometry (DEXA), [...] Read more.
This study aimed to describe sonographic features of rectus femoris muscle (RFM) in patients with metabolic dysfunction-associated fatty liver disease (MASLD) and their correlation with body composition parameters and muscle strength. A total of 67 patients with MASLD underwent dual-energy X-ray absorptiometry (DEXA), bioimpedance analysis (BIA), muscle strength measurement (grip strength [GS] and chair stand test [CST]), and ultrasound (US) investigation of the RFM in the dominant thigh using a 4 to 18 MHz linear probe. MASLD patients exhibited increased RFM echogenicity, possibly due to fatty infiltration. We confirmed that the greater the subcutaneous fat thickness, the smaller was the muscle mass (p < 0.001), and the lower was the muscle strength (p < 0.001 for GS and p = 0.002 for CST). On the contrary, the greater the anteroposterior diameter (APD) of RFM, the higher was the muscle mass (p < 0.001), and the greater was the muscle strength (p < 0.001 for GS and p = 0.007 for CST). In addition, APD of the RFM and stiffness of RFM exhibited direct correlation with bone mineral density values of the lumbar spine (p = 0.005 for both GS and CST). We concluded that US investigation of the RFM in the dominant thigh can be helpful in identifying MASLD patients at a high risk of musculoskeletal disorders given repeated point-of-care clinical evaluations. Full article
(This article belongs to the Special Issue Diagnosis, Pathogenesis and Treatment of Muscular Dystrophy)
Show Figures

Figure 1

12 pages, 323 KiB  
Review
Health Benefits of Kimchi, Sauerkraut, and Other Fermented Foods of the Genus Brassica
by Sabina Fijan, Polona Fijan, Lei Wei and Maria L. Marco
Appl. Microbiol. 2024, 4(3), 1165-1176; https://doi.org/10.3390/applmicrobiol4030079 (registering DOI) - 28 Jul 2024
Abstract
Fermented foods made through microbial growth and enzymatic conversions have been integral to human diets for at least 10,000 years. Recent interest in fermented foods has surged due to their functional properties and health benefits. Cruciferous vegetables of the genus Brassica, such [...] Read more.
Fermented foods made through microbial growth and enzymatic conversions have been integral to human diets for at least 10,000 years. Recent interest in fermented foods has surged due to their functional properties and health benefits. Cruciferous vegetables of the genus Brassica, such as cabbage, broccoli, and cauliflower, are commonly used to produce fermented foods like sauerkraut, kimchi, pao cai, fermented turnips, and others. These foods are rich in lactic acid bacteria (LAB) and bioactive compounds, which contribute to their potential health-promoting properties. We examined 12 clinical trials investigating fermented foods of the genus Brassica. These studies, which mainly assessed the health benefits of kimchi or sauerkraut consumption, found that regular intake can alleviate symptoms of irritable bowel syndrome (IBS), aid weight loss, and enhance metabolic health. Seven observational studies also observed health benefits when consuming fermented foods of the genus Brassica. Six of the seven observational studies on kimchi intake linked kimchi intake to reduced obesity risk and other health benefits. An observational study linked sauerkraut and cabbage consumption to reduced breast cancer risk. Despite these findings, the exact roles of various microorganisms and bioactive compounds within these health effects require further investigation. This review underscores the potential of fermented cruciferous vegetables as functional foods, and advocates for more clinical trials and mechanistic studies to understand and optimize their health benefits. Full article
17 pages, 2825 KiB  
Article
Investigation into Antioxidant Mechanism of Lycium barbarum Extract in Carbendazim-Induced PC12 Cell Injury Model through Transcriptomics and Metabolomics Analyses
by Pingxiang Liu, Ju Chen, Xing Wen, Xin Shi, Xiaoqian Yin, Jiang Yu, Yongzhong Qian, Chunlin Gou and Yanyang Xu
Foods 2024, 13(15), 2384; https://doi.org/10.3390/foods13152384 (registering DOI) - 28 Jul 2024
Abstract
Lycium barbarum L., an important functional food in China, has antioxidant and antiaging activity. However, the exact antioxidant activity mechanism of Lycium barbarum extracts (LBE) is not well understood. Therefore, a carbendazim (CBZ)-induced PC12 cell injury model was constructed and vitrificated to study [...] Read more.
Lycium barbarum L., an important functional food in China, has antioxidant and antiaging activity. However, the exact antioxidant activity mechanism of Lycium barbarum extracts (LBE) is not well understood. Therefore, a carbendazim (CBZ)-induced PC12 cell injury model was constructed and vitrificated to study the antioxidant activity of fresh LBE on the basis of extraction parameter optimization via the full factorial design of experiments (DOE) method. The results showed that the pretreatment of PC12 cells with LBE could reduce the reactive oxygen species (ROS) level by 14.6% and inhibited the mitochondrial membrane potential (MMP) decline by 12.0%. Furthermore, the integrated analysis revealed that LBE played an antioxidant role by activating oxidative phosphorylation (OXPHOS) and restoring MMP, maintaining the tricarboxylic acid (TCA) cycle stability, and regulating the GSH metabolic pathway. The results of the present study provide new ideas for the understanding of the antioxidant function of LBE from a global perspective. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

Back to TopTop