(Translated by https://www.hiragana.jp/)
John von Neumann - Wikipedia, ìwé-ìmọ̀ ọ̀fẹ́ Jump to content

John von Neumann

Lát'ọwọ́ Wikipedia, ìwé ìmọ̀ ọ̀fẹ́
John von Neumann
John von Neumann in the 1940s
Ìbí(1903-12-28)Oṣù Kejìlá 28, 1903
Budapest, Austria-Hungary
AláìsíFebruary 8, 1957(1957-02-08) (ọmọ ọdún 53)
Washington, D.C., United States
IbùgbéUnited States
Ọmọ orílẹ̀-èdèHungarian and American
PápáMathematics and computer science
Ilé-ẹ̀kọ́University of Berlin
Princeton University
Institute for Advanced Study
Site Y, Los Alamos
Ibi ẹ̀kọ́University of Pázmány Péter
ETH Zürich
Doctoral advisorLipót Fejér
Doctoral studentsDonald B. Gillies
Israel Halperin
John P. Mayberry
Other notable studentsPaul Halmos
Clifford Hugh Dowker
Ó gbajúmọ̀ fúnvon Neumann Equation
Abelian von Neumann algebra
Game theory
von Neumann algebra
von Neumann architecture
Von Neumann bicommutant theorem
Von Neumann cellular automaton
Von Neumann universal constructor
Von Neumann entropy
Von Neumann regular ring
Von Neumann–Bernays–Gödel set theory
Von Neumann universe
Von Neumann conjecture
Von Neumann's inequality
Stone–von Neumann theorem
Von Neumann stability analysis
Minimax theorem
Von Neumann extractor
Von Neumann ergodic theorem
Direct integral
Ultrastrong topology
Àwọn ẹ̀bùn àyẹ́síEnrico Fermi Award (1956)
Signature
Fáìlì:Johnny von neumann sig.gif
Quantum mechanics
Uncertainty principle
Introduction
Mathematical formulations

John von Neumann (Pípè: /vɒn ˈnɔɪmən/) (December 28, 1903 – February 8, 1957) was a Hungarian American mathematician who made major contributions to a vast range of fields,[1] including set theory, functional analysis, quantum mechanics, ergodic theory, continuous geometry, economics and game theory, computer science, numerical analysis, hydrodynamics (of explosions), and statistics, as well as many other mathematical fields. He is generally regarded as one of the greatest mathematicians in modern history.[2]



Itokasi

  1. Ed Regis (1992-11-08). "Johnny Jiggles the Planet". The New York Times. Retrieved 2008-02-04. 
  2. Impagliazzo, p. vii