(Translated by https://www.hiragana.jp/)
Estrogen receptor beta - Wikipedia

Estrogen receptor beta

Estrogen receptor beta (ERβべーた) also known as NR3A2 (nuclear receptor subfamily 3, group A, member 2) is one of two main types of estrogen receptor—a nuclear receptor which is activated by the sex hormone estrogen.[5] In humans ERβべーた is encoded by the ESR2 gene.[6]

ESR2
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesESR2, ER-BETA, ESR-BETA, ESRB, ESTRB, Erb, NR3A2, estrogen receptor 2, ODG8
External IDsOMIM: 601663 MGI: 109392 HomoloGene: 1100 GeneCards: ESR2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_010157
NM_207707

RefSeq (protein)

NP_034287
NP_997590

Location (UCSC)Chr 14: 64.08 – 64.34 MbChr 12: 76.17 – 76.22 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Function edit

ERβべーた is a member of the family of estrogen receptors and the superfamily of nuclear receptor transcription factors. The gene product contains an N-terminal DNA binding domain and C-terminal ligand binding domain and is localized to the nucleus, cytoplasm, and mitochondria. Upon binding to 17-βべーた-estradiol, estriol or related ligands, the encoded protein forms homo-dimers or hetero-dimers with estrogen receptor αあるふぁ that interact with specific DNA sequences to activate transcription. Some isoforms dominantly inhibit the activity of other estrogen receptor family members. Several alternatively spliced transcript variants of this gene have been described, but the full-length nature of some of these variants has not been fully characterized.[7]

ERβべーた may inhibit cell proliferation and opposes the actions of ERαあるふぁ in reproductive tissue.[8] ERβべーた may also have an important role in adaptive function of the lung during pregnancy.[9]

ERβべーた is a potent tumor suppressor and plays a crucial role in many cancer types such as prostate cancer and ovarian cancer.[10][11]

Mammary gland edit

ERβべーた knockout mice show normal mammary gland development at puberty and are able to lactate normally.[12][13][14] The mammary glands of adult virgin female mice are indistinguishable from those of age-matched wild-type virgin female mice.[12] This is in contrast to ERαあるふぁ knockout mice, in which a complete absence of mammary gland development at puberty and thereafter is observed.[12][14] Administration of the selective ERβべーた agonist ERB-041 to immature ovariectomized female rats produced no observable effects in the mammary glands, further indicating that the ERβべーた is non-mammotrophic.[15][14][16]

Although ERβべーた is not required for pubertal development of the mammary glands, it may be involved in terminal differentiation in pregnancy, and may also be necessary to maintain the organization and differentiation of mammary epithelium in adulthood.[17][18] In old female ERβべーた knockout mice, severe cystic mammary disease that is similar in appearance to postmenopausal mastopathy develops, whereas this does not occur in aged wild-type female mice.[13] However, ERβべーた knockout mice are not only deficient in ERβべーた signaling in the mammary glands, but also have deficient progesterone exposure due to impairment of corpora lutea formation.[13][17] This complicates attribution of the preceding findings to mammary ERβべーた signaling.[13][17]

Selective ERβべーた agonism with diarylpropionitrile (DPN) has been found to counteract the proliferative effects in the mammary glands of selective ERαあるふぁ agonism with propylpyrazoletriol (PPT) in ovariectomized postmenopausal female rats.[19][20] Similarly, overexpression of ERβべーた via lentiviral infection in mature virgin female rats decreases mammary proliferation.[20] ERαあるふぁ signaling has proliferative effects in both normal breast and breast cancer cell lines, whereas ERβべーた has generally antiproliferative effects in such cell lines.[17] However, ERβべーた has been found to have proliferative effects in some breast cell lines.[17]

Expression of ERαあるふぁ and ERβべーた in the mammary gland have been found to vary throughout the menstrual cycle and in an ovariectomized state in female rats.[20] Whereas mammary ERαあるふぁ in rhesus macaques is downregulated in response to increased estradiol levels, expression of ERβべーた in the mammary glands is not.[21] Expression of ERαあるふぁ and ERβべーた in the mammary glands also differs throughout life in female mice.[22] Mammary ERαあるふぁ expression is higher and mammary ERβべーた expression lower in younger female mice, while mammary ERαあるふぁ expression is lower and mammary ERβべーた expression higher in older female mice as well as in parous female mice.[22] Mammary proliferation and estrogen sensitivity is higher in young female mice than in old or parous female mice, particularly during pubertal mammary gland development.[22]

Tissue distribution edit

ERβべーた is expressed by many tissues including the uterus,[23] blood monocytes and tissue macrophages, colonic and pulmonary epithelial cells and in prostatic epithelium and in malignant counterparts of these tissues. Also, ERβべーた is found throughout the brain at different concentrations in different neuron clusters.[24][25] ERβべーた is also highly expressed in normal breast epithelium, although its expression declines with cancer progression.[26] ERβべーた is expressed in all subtypes of breast cancer.[27] Controversy regarding ERβべーた protein expression has hindered study of ERβべーた, but highly sensitive monoclonal antibodies have been produced and well-validated to address these issues.[28]

ERβべーた abnormalities edit

ERβべーた function is related to various cardiovascular targets including ATP-binding cassette transporter A1 (ABCA1) and apolipoprotein A1 (ApoA-1). Polymorphism may affect ERβべーた function and lead to altered responses in postmenopausal women receiving hormone replacement therapy.[29] Abnormalities in gene expression associated with ERβべーた have also been linked to autism spectrum disorder.[30]

Disease edit

Cardiovascular disease edit

Mutations in ERβべーた have been shown to influence cardiomyocytes, the cells that comprise the largest part of the heart, and can lead to an increased risk of cardiovascular disease (CVD). There is a disparity in prevalence of CVD between pre- and post-menopausal women, and the difference can be attributed to estrogen levels. Many types of ERβべーた receptors exist in order to help regulate gene expression and subsequent health in the body, but binding of 17βべーたE2 (a naturally occurring estrogen) specifically improves cardiac metabolism. The heart utilizes a lot of energy in the form of ATP to properly pump blood and maintain physiological requirements in order to live, and 17βべーたE2 helps by increasing these myocardial ATP levels and respiratory function.[31]

In addition, 17βべーたE2 can alter myocardial signaling pathways and stimulate myocyte regeneration, which can aid in inhibiting myocyte cell death. The ERβべーた signaling pathway plays a role in both vasodilation and arterial dilation, which contributes to an individual having a healthy heart rate and a decrease in blood pressure. This regulation can increase endothelial function and arterial perfusion, both of which are important to myocyte health. Thus, alterations in this signaling pathways due to ERβべーた mutation could lead to myocyte cell death from physiological stress. While ERαあるふぁ has a more profound role in regeneration after myocyte cell death, ERβべーた can still help by increasing endothelial progenitor cell activation and subsequent cardiac function.[32]

Alzheimer's disease edit

Genetic variation in ERβべーた is both sex and age dependent and ERβべーた polymorphism can lead to accelerated brain aging, cognitive impairment, and development of AD pathology. Similar to CVD, post-menopausal women have an increased risk of developing Alzheimer's disease (AD) due to a loss of estrogen, which affects proper aging of the hippocampus, neural survival and regeneration, and amyloid metabolism. ERβべーた mRNA is highly expressed in hippocampal formation, an area of the brain that is associated with memory. This expression contributes to increased neuronal survival and helps protect against neurodegenerative diseases such as AD. The pathology of AD is also associated with accumulation of amyloid beta peptide (Aβべーた). While a proper concentration of Aβべーた in the brain is important for healthy functioning, too much can lead to cognitive impairment. Thus, ERβべーた helps control Aβべーた levels by maintaining the protein it is derived from, βべーた-amyloid precursor protein. ERβべーた helps by up-regulating insulin-degrading enzyme (IDE), which leads to βべーた-amyloid degradation when accumulation levels begin to rise. However, in AD, lack of ERβべーた causes a decrease in this degradation and an increase in plaque build-up.[33]

ERβべーた also plays a role in regulating APOE, a risk factor for AD that redistributes lipids across cells. APOE expression in the hippocampus is specifically regulated by 17βべーたE2, affecting learning and memory in individuals afflicted with AD. Thus, estrogen therapy via an ERβべーた-targeted approach can be used as a prevention method for AD either before or at the onset of menopause. Interactions between ERαあるふぁ and ERβべーた can lead to antagonistic actions in the brain, so an ERβべーた-targeted approach can increase therapeutic neural responses independently of ERαあるふぁ. Therapeutically, ERβべーた can be used in both men and women in order to regulate plaque formation in the brain.[34]

Neuroprotective benefits edit

Synaptic strength and plasticity edit

ERβべーた levels can dictate both synaptic strength and neuroplasticity through neural structure modifications. Variations in endogenous estrogen levels cause changes in dendritic architecture in the hippocampus, which affects neural signaling and plasticity. Specifically, lower estrogen levels lead to decreased dendritic spines and improper signaling, inhibiting plasticity of the brain. However, treatment of 17βべーたE2 can reverse this affect, giving it the ability to modify hippocampal structure. As a result of the relationship between dendritic architecture and long-term potentiation (LTP), ERβべーた can enhance LTP and lead to an increase in synaptic strength. Furthermore, 17βべーたE2 promotes neurogenesis in developing hippocampal neurons and neurons in the subventricular zone and dentate gyrus of the adult human brain. Specifically, ERβべーた increases the proliferation of progenitor cells to create new neurons and can be increased later in life through 17βべーたE2 treatment.[35][36]

Ligands edit

Agonists edit

Non-selective edit

Selective edit

Agonists of ERβべーた selective over ERαあるふぁ include:

Antagonists edit

Non-selective edit

Selective edit

Antagonists of ERβべーた selective over ERαあるふぁ include:

  • PHTPP
  • (R,R)-Tetrahydrochrysene ((R,R)-THC) – actually not selective over ERαあるふぁ, but rather an agonist instead of antagonist of ERαあるふぁ

Affinities edit

Affinities of estrogen receptor ligands for the ERαあるふぁ and ERβべーた
Ligand Other names Relative binding affinities (RBA, %)a Absolute binding affinities (Ki, nM)a Action
ERαあるふぁ ERβべーた ERαあるふぁ ERβべーた
Estradiol E2; 17βべーた-Estradiol 100 100 0.115 (0.04–0.24) 0.15 (0.10–2.08) Estrogen
Estrone E1; 17-Ketoestradiol 16.39 (0.7–60) 6.5 (1.36–52) 0.445 (0.3–1.01) 1.75 (0.35–9.24) Estrogen
Estriol E3; 16αあるふぁ-OH-17βべーた-E2 12.65 (4.03–56) 26 (14.0–44.6) 0.45 (0.35–1.4) 0.7 (0.63–0.7) Estrogen
Estetrol E4; 15αあるふぁ,16αあるふぁ-Di-OH-17βべーた-E2 4.0 3.0 4.9 19 Estrogen
Alfatradiol 17αあるふぁ-Estradiol 20.5 (7–80.1) 8.195 (2–42) 0.2–0.52 0.43–1.2 Metabolite
16-Epiestriol 16βべーた-Hydroxy-17βべーた-estradiol 7.795 (4.94–63) 50 ? ? Metabolite
17-Epiestriol 16αあるふぁ-Hydroxy-17αあるふぁ-estradiol 55.45 (29–103) 79–80 ? ? Metabolite
16,17-Epiestriol 16βべーた-Hydroxy-17αあるふぁ-estradiol 1.0 13 ? ? Metabolite
2-Hydroxyestradiol 2-OH-E2 22 (7–81) 11–35 2.5 1.3 Metabolite
2-Methoxyestradiol 2-MeO-E2 0.0027–2.0 1.0 ? ? Metabolite
4-Hydroxyestradiol 4-OH-E2 13 (8–70) 7–56 1.0 1.9 Metabolite
4-Methoxyestradiol 4-MeO-E2 2.0 1.0 ? ? Metabolite
2-Hydroxyestrone 2-OH-E1 2.0–4.0 0.2–0.4 ? ? Metabolite
2-Methoxyestrone 2-MeO-E1 <0.001–<1 <1 ? ? Metabolite
4-Hydroxyestrone 4-OH-E1 1.0–2.0 1.0 ? ? Metabolite
4-Methoxyestrone 4-MeO-E1 <1 <1 ? ? Metabolite
16αあるふぁ-Hydroxyestrone 16αあるふぁ-OH-E1; 17-Ketoestriol 2.0–6.5 35 ? ? Metabolite
2-Hydroxyestriol 2-OH-E3 2.0 1.0 ? ? Metabolite
4-Methoxyestriol 4-MeO-E3 1.0 1.0 ? ? Metabolite
Estradiol sulfate E2S; Estradiol 3-sulfate <1 <1 ? ? Metabolite
Estradiol disulfate Estradiol 3,17βべーた-disulfate 0.0004 ? ? ? Metabolite
Estradiol 3-glucuronide E2-3G 0.0079 ? ? ? Metabolite
Estradiol 17βべーた-glucuronide E2-17G 0.0015 ? ? ? Metabolite
Estradiol 3-gluc. 17βべーた-sulfate E2-3G-17S 0.0001 ? ? ? Metabolite
Estrone sulfate E1S; Estrone 3-sulfate <1 <1 >10 >10 Metabolite
Estradiol benzoate EB; Estradiol 3-benzoate 10 ? ? ? Estrogen
Estradiol 17βべーた-benzoate E2-17B 11.3 32.6 ? ? Estrogen
Estrone methyl ether Estrone 3-methyl ether 0.145 ? ? ? Estrogen
ent-Estradiol 1-Estradiol 1.31–12.34 9.44–80.07 ? ? Estrogen
Equilin 7-Dehydroestrone 13 (4.0–28.9) 13.0–49 0.79 0.36 Estrogen
Equilenin 6,8-Didehydroestrone 2.0–15 7.0–20 0.64 0.62 Estrogen
17βべーた-Dihydroequilin 7-Dehydro-17βべーた-estradiol 7.9–113 7.9–108 0.09 0.17 Estrogen
17αあるふぁ-Dihydroequilin 7-Dehydro-17αあるふぁ-estradiol 18.6 (18–41) 14–32 0.24 0.57 Estrogen
17βべーた-Dihydroequilenin 6,8-Didehydro-17βべーた-estradiol 35–68 90–100 0.15 0.20 Estrogen
17αあるふぁ-Dihydroequilenin 6,8-Didehydro-17αあるふぁ-estradiol 20 49 0.50 0.37 Estrogen
Δでるた8-Estradiol 8,9-Dehydro-17βべーた-estradiol 68 72 0.15 0.25 Estrogen
Δでるた8-Estrone 8,9-Dehydroestrone 19 32 0.52 0.57 Estrogen
Ethinylestradiol EE; 17αあるふぁ-Ethynyl-17βべーた-E2 120.9 (68.8–480) 44.4 (2.0–144) 0.02–0.05 0.29–0.81 Estrogen
Mestranol EE 3-methyl ether ? 2.5 ? ? Estrogen
Moxestrol RU-2858; 11βべーた-Methoxy-EE 35–43 5–20 0.5 2.6 Estrogen
Methylestradiol 17αあるふぁ-Methyl-17βべーた-estradiol 70 44 ? ? Estrogen
Diethylstilbestrol DES; Stilbestrol 129.5 (89.1–468) 219.63 (61.2–295) 0.04 0.05 Estrogen
Hexestrol Dihydrodiethylstilbestrol 153.6 (31–302) 60–234 0.06 0.06 Estrogen
Dienestrol Dehydrostilbestrol 37 (20.4–223) 56–404 0.05 0.03 Estrogen
Benzestrol (B2) 114 ? ? ? Estrogen
Chlorotrianisene TACE 1.74 ? 15.30 ? Estrogen
Triphenylethylene TPE 0.074 ? ? ? Estrogen
Triphenylbromoethylene TPBE 2.69 ? ? ? Estrogen
Tamoxifen ICI-46,474 3 (0.1–47) 3.33 (0.28–6) 3.4–9.69 2.5 SERM
Afimoxifene 4-Hydroxytamoxifen; 4-OHT 100.1 (1.7–257) 10 (0.98–339) 2.3 (0.1–3.61) 0.04–4.8 SERM
Toremifene 4-Chlorotamoxifen; 4-CT ? ? 7.14–20.3 15.4 SERM
Clomifene MRL-41 25 (19.2–37.2) 12 0.9 1.2 SERM
Cyclofenil F-6066; Sexovid 151–152 243 ? ? SERM
Nafoxidine U-11,000A 30.9–44 16 0.3 0.8 SERM
Raloxifene 41.2 (7.8–69) 5.34 (0.54–16) 0.188–0.52 20.2 SERM
Arzoxifene LY-353,381 ? ? 0.179 ? SERM
Lasofoxifene CP-336,156 10.2–166 19.0 0.229 ? SERM
Ormeloxifene Centchroman ? ? 0.313 ? SERM
Levormeloxifene 6720-CDRI; NNC-460,020 1.55 1.88 ? ? SERM
Ospemifene Deaminohydroxytoremifene 0.82–2.63 0.59–1.22 ? ? SERM
Bazedoxifene ? ? 0.053 ? SERM
Etacstil GW-5638 4.30 11.5 ? ? SERM
ICI-164,384 63.5 (3.70–97.7) 166 0.2 0.08 Antiestrogen
Fulvestrant ICI-182,780 43.5 (9.4–325) 21.65 (2.05–40.5) 0.42 1.3 Antiestrogen
Propylpyrazoletriol PPT 49 (10.0–89.1) 0.12 0.40 92.8 ERαあるふぁ agonist
16αあるふぁ-LE2 16αあるふぁ-Lactone-17βべーた-estradiol 14.6–57 0.089 0.27 131 ERαあるふぁ agonist
16αあるふぁ-Iodo-E2 16αあるふぁ-Iodo-17βべーた-estradiol 30.2 2.30 ? ? ERαあるふぁ agonist
Methylpiperidinopyrazole MPP 11 0.05 ? ? ERαあるふぁ antagonist
Diarylpropionitrile DPN 0.12–0.25 6.6–18 32.4 1.7 ERβべーた agonist
8βべーた-VE2 8βべーた-Vinyl-17βべーた-estradiol 0.35 22.0–83 12.9 0.50 ERβべーた agonist
Prinaberel ERB-041; WAY-202,041 0.27 67–72 ? ? ERβべーた agonist
ERB-196 WAY-202,196 ? 180 ? ? ERβべーた agonist
Erteberel SERBA-1; LY-500,307 ? ? 2.68 0.19 ERβべーた agonist
SERBA-2 ? ? 14.5 1.54 ERβべーた agonist
Coumestrol 9.225 (0.0117–94) 64.125 (0.41–185) 0.14–80.0 0.07–27.0 Xenoestrogen
Genistein 0.445 (0.0012–16) 33.42 (0.86–87) 2.6–126 0.3–12.8 Xenoestrogen
Equol 0.2–0.287 0.85 (0.10–2.85) ? ? Xenoestrogen
Daidzein 0.07 (0.0018–9.3) 0.7865 (0.04–17.1) 2.0 85.3 Xenoestrogen
Biochanin A 0.04 (0.022–0.15) 0.6225 (0.010–1.2) 174 8.9 Xenoestrogen
Kaempferol 0.07 (0.029–0.10) 2.2 (0.002–3.00) ? ? Xenoestrogen
Naringenin 0.0054 (<0.001–0.01) 0.15 (0.11–0.33) ? ? Xenoestrogen
8-Prenylnaringenin 8-PN 4.4 ? ? ? Xenoestrogen
Quercetin <0.001–0.01 0.002–0.040 ? ? Xenoestrogen
Ipriflavone <0.01 <0.01 ? ? Xenoestrogen
Miroestrol 0.39 ? ? ? Xenoestrogen
Deoxymiroestrol 2.0 ? ? ? Xenoestrogen
βべーた-Sitosterol <0.001–0.0875 <0.001–0.016 ? ? Xenoestrogen
Resveratrol <0.001–0.0032 ? ? ? Xenoestrogen
αあるふぁ-Zearalenol 48 (13–52.5) ? ? ? Xenoestrogen
βべーた-Zearalenol 0.6 (0.032–13) ? ? ? Xenoestrogen
Zeranol αあるふぁ-Zearalanol 48–111 ? ? ? Xenoestrogen
Taleranol βべーた-Zearalanol 16 (13–17.8) 14 0.8 0.9 Xenoestrogen
Zearalenone ZEN 7.68 (2.04–28) 9.45 (2.43–31.5) ? ? Xenoestrogen
Zearalanone ZAN 0.51 ? ? ? Xenoestrogen
Bisphenol A BPA 0.0315 (0.008–1.0) 0.135 (0.002–4.23) 195 35 Xenoestrogen
Endosulfan EDS <0.001–<0.01 <0.01 ? ? Xenoestrogen
Kepone Chlordecone 0.0069–0.2 ? ? ? Xenoestrogen
o,p'-DDT 0.0073–0.4 ? ? ? Xenoestrogen
p,p'-DDT 0.03 ? ? ? Xenoestrogen
Methoxychlor p,p'-Dimethoxy-DDT 0.01 (<0.001–0.02) 0.01–0.13 ? ? Xenoestrogen
HPTE Hydroxychlor; p,p'-OH-DDT 1.2–1.7 ? ? ? Xenoestrogen
Testosterone T; 4-Androstenolone <0.0001–<0.01 <0.002–0.040 >5000 >5000 Androgen
Dihydrotestosterone DHT; 5αあるふぁ-Androstanolone 0.01 (<0.001–0.05) 0.0059–0.17 221–>5000 73–1688 Androgen
Nandrolone 19-Nortestosterone; 19-NT 0.01 0.23 765 53 Androgen
Dehydroepiandrosterone DHEA; Prasterone 0.038 (<0.001–0.04) 0.019–0.07 245–1053 163–515 Androgen
5-Androstenediol A5; Androstenediol 6 17 3.6 0.9 Androgen
4-Androstenediol 0.5 0.6 23 19 Androgen
4-Androstenedione A4; Androstenedione <0.01 <0.01 >10000 >10000 Androgen
3αあるふぁ-Androstanediol 3αあるふぁ-Adiol 0.07 0.3 260 48 Androgen
3βべーた-Androstanediol 3βべーた-Adiol 3 7 6 2 Androgen
Androstanedione 5αあるふぁ-Androstanedione <0.01 <0.01 >10000 >10000 Androgen
Etiocholanedione 5βべーた-Androstanedione <0.01 <0.01 >10000 >10000 Androgen
Methyltestosterone 17αあるふぁ-Methyltestosterone <0.0001 ? ? ? Androgen
Ethinyl-3αあるふぁ-androstanediol 17αあるふぁ-Ethynyl-3αあるふぁ-adiol 4.0 <0.07 ? ? Estrogen
Ethinyl-3βべーた-androstanediol 17αあるふぁ-Ethynyl-3βべーた-adiol 50 5.6 ? ? Estrogen
Progesterone P4; 4-Pregnenedione <0.001–0.6 <0.001–0.010 ? ? Progestogen
Norethisterone NET; 17αあるふぁ-Ethynyl-19-NT 0.085 (0.0015–<0.1) 0.1 (0.01–0.3) 152 1084 Progestogen
Norethynodrel 5(10)-Norethisterone 0.5 (0.3–0.7) <0.1–0.22 14 53 Progestogen
Tibolone 7αあるふぁ-Methylnorethynodrel 0.5 (0.45–2.0) 0.2–0.076 ? ? Progestogen
Δでるた4-Tibolone 7αあるふぁ-Methylnorethisterone 0.069–<0.1 0.027–<0.1 ? ? Progestogen
3αあるふぁ-Hydroxytibolone 2.5 (1.06–5.0) 0.6–0.8 ? ? Progestogen
3βべーた-Hydroxytibolone 1.6 (0.75–1.9) 0.070–0.1 ? ? Progestogen
Footnotes: a = (1) Binding affinity values are of the format "median (range)" (# (#–#)), "range" (#–#), or "value" (#) depending on the values available. The full sets of values within the ranges can be found in the Wiki code. (2) Binding affinities were determined via displacement studies in a variety of in-vitro systems with labeled estradiol and human ERαあるふぁ and ERβべーた proteins (except the ERβべーた values from Kuiper et al. (1997), which are rat ERβべーた). Sources: See template page.

Interactions edit

Estrogen receptor beta has been shown to interact with:

References edit

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000140009Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000021055Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA (June 1996). "Cloning of a novel receptor expressed in rat prostate and ovary". Proceedings of the National Academy of Sciences of the United States of America. 93 (12): 5925–5930. doi:10.1073/pnas.93.12.5925. PMC 39164. PMID 8650195.
  6. ^ Mosselman S, Polman J, Dijkema R (August 1996). "ER beta: identification and characterization of a novel human estrogen receptor". FEBS Letters. 392 (1): 49–53. doi:10.1016/0014-5793(96)00782-X. PMID 8769313. S2CID 85795649.
  7. ^ "Entrez Gene: ESR2 estrogen receptor 2 (ER beta)".
  8. ^ Weihua Z, Saji S, Mäkinen S, Cheng G, Jensen EV, Warner M, Gustafsson JA (May 2000). "Estrogen receptor (ER) beta, a modulator of ERalpha in the uterus". Proceedings of the National Academy of Sciences of the United States of America. 97 (11): 5936–5941. Bibcode:2000PNAS...97.5936W. doi:10.1073/pnas.97.11.5936. PMC 18537. PMID 10823946.
  9. ^ Carey MA, Card JW, Voltz JW, Germolec DR, Korach KS, Zeldin DC (August 2007). "The impact of sex and sex hormones on lung physiology and disease: lessons from animal studies". American Journal of Physiology. Lung Cellular and Molecular Physiology. 293 (2): L272–L278. doi:10.1152/ajplung.00174.2007. PMID 17575008. S2CID 3175960.
  10. ^ Stettner M, Kaulfuss S, Burfeind P, Schweyer S, Strauss A, Ringert RH, Thelen P (October 2007). "The relevance of estrogen receptor-beta expression to the antiproliferative effects observed with histone deacetylase inhibitors and phytoestrogens in prostate cancer treatment". Molecular Cancer Therapeutics. 6 (10): 2626–2633. doi:10.1158/1535-7163.MCT-07-0197. PMID 17913855.
  11. ^ Kyriakidis I, Papaioannidou P (June 2016). "Estrogen receptor beta and ovarian cancer: a key to pathogenesis and response to therapy". Archives of Gynecology and Obstetrics. 293 (6): 1161–1168. doi:10.1007/s00404-016-4027-8. PMID 26861465. S2CID 25627227.
  12. ^ a b c Couse JF, Korach KS (June 1999). "Estrogen receptor null mice: what have we learned and where will they lead us?". Endocrine Reviews. 20 (3): 358–417. doi:10.1210/edrv.20.3.0370. PMID 10368776.
  13. ^ a b c d Gustafsson JA, Warner M (November 2000). "Estrogen receptor beta in the breast: role in estrogen responsiveness and development of breast cancer". The Journal of Steroid Biochemistry and Molecular Biology. 74 (5): 245–248. doi:10.1016/S0960-0760(00)00130-8. PMID 11162931. S2CID 39714457.
  14. ^ a b c Nilsson S, Gustafsson JÅ (2010). "Estrogen Receptors: Their Actions and Functional Roles in Health and Disease". Nuclear Receptors. pp. 91–141. doi:10.1007/978-90-481-3303-1_5. ISBN 978-90-481-3302-4.
  15. ^ Nilsson S, Gustafsson JÅ (January 2011). "Estrogen receptors: therapies targeted to receptor subtypes". Clinical Pharmacology and Therapeutics. 89 (1): 44–55. doi:10.1038/clpt.2010.226. PMID 21124311. S2CID 22724380.
  16. ^ Harris HA, Albert LM, Leathurby Y, Malamas MS, Mewshaw RE, Miller CP, et al. (October 2003). "Evaluation of an estrogen receptor-beta agonist in animal models of human disease". Endocrinology. 144 (10): 4241–4249. doi:10.1210/en.2003-0550. PMID 14500559.
  17. ^ a b c d e Thomas C, Gustafsson JÅ (2019). "Estrogen Receptor βべーた and Breast Cancer". Cancer Drug Discovery and Development. pp. 309–342. doi:10.1007/978-3-319-99350-8_12. ISBN 978-3-319-99349-2. ISSN 2196-9906.
  18. ^ Dey P, Barros RP, Warner M, Ström A, Gustafsson JÅ (December 2013). "Insight into the mechanisms of action of estrogen receptor βべーた in the breast, prostate, colon, and CNS". Journal of Molecular Endocrinology. 51 (3): T61–T74. doi:10.1530/JME-13-0150. PMID 24031087.
  19. ^ Song X, Pan ZZ (May 2012). "Estrogen receptor-beta agonist diarylpropionitrile counteracts the estrogenic activity of estrogen receptor-alpha agonist propylpyrazole-triol in the mammary gland of ovariectomized Sprague Dawley rats". The Journal of Steroid Biochemistry and Molecular Biology. 130 (1–2): 26–35. doi:10.1016/j.jsbmb.2011.12.018. PMID 22266284. S2CID 23865463.
  20. ^ a b c Song, X. (2014). Estrogen Receptor Beta Is A Negative Regulator Of Mammary Cell Proliferation. Graduate College Dissertations and Theses. 259. https://scholarworks.uvm.edu/graddis/259
  21. ^ Cheng G, Li Y, Omoto Y, Wang Y, Berg T, Nord M, et al. (January 2005). "Differential regulation of estrogen receptor (ER)alpha and ERbeta in primate mammary gland". The Journal of Clinical Endocrinology and Metabolism. 90 (1): 435–444. doi:10.1210/jc.2004-0861. PMID 15507513.
  22. ^ a b c Dall GV, Hawthorne S, Seyed-Razavi Y, Vieusseux J, Wu W, Gustafsson JA, et al. (June 2018). "Estrogen receptor subtypes dictate the proliferative nature of the mammary gland". The Journal of Endocrinology. 237 (3): 323–336. doi:10.1530/JOE-17-0582. PMID 29636363.
  23. ^ Hapangama DK, Kamal AM, Bulmer JN (Mar 2015). "Estrogen receptor βべーた: the guardian of the endometrium". Human Reproduction Update. 21 (2): 174–193. doi:10.1093/humupd/dmu053. PMID 25305176.
  24. ^ Couse JF, Lindzey J, Grandien K, Gustafsson JA, Korach KS (November 1997). "Tissue distribution and quantitative analysis of estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta) messenger ribonucleic acid in the wild-type and ERalpha-knockout mouse". Endocrinology. 138 (11): 4613–4621. doi:10.1210/endo.138.11.5496. PMID 9348186.
  25. ^ Koehler KF, Helguero LA, Haldosén LA, Warner M, Gustafsson JA (May 2005). "Reflections on the discovery and significance of estrogen receptor beta". Endocrine Reviews. 26 (3): 465–478. doi:10.1210/er.2004-0027. PMID 15857973.
  26. ^ Leygue E, Dotzlaw H, Watson PH, Murphy LC (August 1998). "Altered estrogen receptor alpha and beta messenger RNA expression during human breast tumorigenesis". Cancer Research. 58 (15): 3197–3201. PMID 9699641.
  27. ^ Reese JM, Suman VJ, Subramaniam M, Wu X, Negron V, Gingery A, et al. (October 2014). "ERβべーた1: characterization, prognosis, and evaluation of treatment strategies in ERαあるふぁ-positive and -negative breast cancer". BMC Cancer. 14 (749): 749. doi:10.1186/1471-2407-14-749. PMC 4196114. PMID 25288324.
  28. ^ Hawse JR, Carter JM, Aspros KG, Bruinsma ES, Koepplin JW, Negron V, et al. (January 2020). "Optimized immunohistochemical detection of estrogen receptor beta using two validated monoclonal antibodies confirms its expression in normal and malignant breast tissues". Breast Cancer Research and Treatment. 179 (1): 241–249. doi:10.1007/s10549-019-05441-3. PMC 6989344. PMID 31571071. S2CID 203609306.
  29. ^ Darabi M, Ani M, Panjehpour M, Rabbani M, Movahedian A, Zarean E (January–February 2011). "Effect of estrogen receptor βべーた A1730G polymorphism on ABCA1 gene expression response to postmenopausal hormone replacement therapy". Genetic Testing and Molecular Biomarkers. 15 (1–2): 11–15. doi:10.1089/gtmb.2010.0106. PMID 21117950.
  30. ^ Crider A, Thakkar R, Ahmed AO, Pillai A (9 September 2014). "Dysregulation of estrogen receptor beta (ERβべーた), aromatase (CYP19A1), and ER co-activators in the middle frontal gyrus of autism spectrum disorder subjects". Molecular Autism. 5 (1): 46. doi:10.1186/2040-2392-5-46. PMC 4161836. PMID 25221668.
  31. ^ Luo T, Kim JK (August 2016). "The Role of Estrogen and Estrogen Receptors on Cardiomyocytes: An Overview". The Canadian Journal of Cardiology. 32 (8): 1017–1025. doi:10.1016/j.cjca.2015.10.021. PMC 4853290. PMID 26860777.
  32. ^ Muka T, Vargas KG, Jaspers L, Wen KX, Dhana K, Vitezova A, et al. (April 2016). "Estrogen receptor βべーた actions in the female cardiovascular system: A systematic review of animal and human studies". Maturitas. 86: 28–43. doi:10.1016/j.maturitas.2016.01.009. PMID 26921926.
  33. ^ Li R, Cui J, Shen Y (May 2014). "Brain sex matters: estrogen in cognition and Alzheimer's disease". Molecular and Cellular Endocrinology. 389 (1–2): 13–21. doi:10.1016/j.mce.2013.12.018. PMC 4040318. PMID 24418360.
  34. ^ Zhao L, Woody SK, Chhibber A (November 2015). "Estrogen receptor βべーた in Alzheimer's disease: From mechanisms to therapeutics". Ageing Research Reviews. 24 (Pt B): 178–190. doi:10.1016/j.arr.2015.08.001. PMC 4661108. PMID 26307455.
  35. ^ Engler-Chiurazzi EB, Brown CM, Povroznik JM, Simpkins JW (October 2017). "Estrogens as neuroprotectants: Estrogenic actions in the context of cognitive aging and brain injury". Progress in Neurobiology. 157: 188–211. doi:10.1016/j.pneurobio.2015.12.008. PMC 4985492. PMID 26891883.
  36. ^ Vargas KG, Milic J, Zaciragic A, Wen KX, Jaspers L, Nano J, et al. (November 2016). "The functions of estrogen receptor beta in the female brain: A systematic review". Maturitas. 93: 41–57. doi:10.1016/j.maturitas.2016.05.014. PMID 27338976.
  37. ^ Maria Kristina Parr; Piwen Zhao; Oliver Haupt; Sandrine Tchoukouegno Ngueu; Jonas Hengevoss; Karl Heinrich Fritzemeier; Marion Piechotta; Nils Schlörer; Peter Muhn; Wen-Ya Zheng; Ming-Yong Xie; Patrick Diel (2014). "Estrogen receptor beta is involved in skeletal muscle hypertrophy induced by the phytoecdysteroid ecdysterone". Molecular Nutrition & Food Research. 58 (9): 1861–1872. doi:10.1002/mnfr.201300806. PMID 24974955.
  38. ^ a b c d e f Hajirahimkhan A, Dietz BM, Bolton JL (May 2013). "Botanical modulation of menopausal symptoms: mechanisms of action?". Planta Medica. 79 (7): 538–553. doi:10.1055/s-0032-1328187. PMC 3800090. PMID 23408273.
  39. ^ Minutolo F, Bertini S, Granchi C, Marchitiello T, Prota G, Rapposelli S, et al. (February 2009). "Structural evolutions of salicylaldoximes as selective agonists for estrogen receptor beta". Journal of Medicinal Chemistry. 52 (3): 858–867. doi:10.1021/jm801458t. PMID 19128016.
  40. ^ Barkhem T, Carlsson B, Nilsson Y, Enmark E, Gustafsson J, Nilsson S (July 1998). "Differential response of estrogen receptor alpha and estrogen receptor beta to partial estrogen agonists/antagonists". Molecular Pharmacology. 54 (1): 105–112. doi:10.1124/mol.54.1.105. PMID 9658195.
  41. ^ Nakamura Y, Felizola SJ, Kurotaki Y, Fujishima F, McNamara KM, Suzuki T, et al. (May 2013). "Cyclin D1 (CCND1) expression is involved in estrogen receptor beta (ERβべーた) in human prostate cancer". The Prostate. 73 (6): 590–595. doi:10.1002/pros.22599. PMID 23060014. S2CID 39130053.
  42. ^ Ogawa S, Inoue S, Watanabe T, Hiroi H, Orimo A, Hosoi T, et al. (February 1998). "The complete primary structure of human estrogen receptor beta (hER beta) and its heterodimerization with ER alpha in vivo and in vitro". Biochemical and Biophysical Research Communications. 243 (1): 122–126. doi:10.1006/bbrc.1997.7893. PMID 9473491.
  43. ^ a b Poelzl G, Kasai Y, Mochizuki N, Shaul PW, Brown M, Mendelsohn ME (March 2000). "Specific association of estrogen receptor beta with the cell cycle spindle assembly checkpoint protein, MAD2". Proceedings of the National Academy of Sciences of the United States of America. 97 (6): 2836–2839. Bibcode:2000PNAS...97.2836P. doi:10.1073/pnas.050580997. PMC 16016. PMID 10706629.
  44. ^ Wong CW, Komm B, Cheskis BJ (June 2001). "Structure-function evaluation of ER alpha and beta interplay with SRC family coactivators. ER selective ligands". Biochemistry. 40 (23): 6756–6765. doi:10.1021/bi010379h. PMID 11389589.
  45. ^ Leo C, Li H, Chen JD (February 2000). "Differential mechanisms of nuclear receptor regulation by receptor-associated coactivator 3". The Journal of Biological Chemistry. 275 (8): 5976–5982. doi:10.1074/jbc.275.8.5976. PMID 10681591.
  46. ^ Lee SK, Jung SY, Kim YS, Na SY, Lee YC, Lee JW (February 2001). "Two distinct nuclear receptor-interaction domains and CREB-binding protein-dependent transactivation function of activating signal cointegrator-2". Molecular Endocrinology. 15 (2): 241–254. doi:10.1210/mend.15.2.0595. PMID 11158331.
  47. ^ Ko L, Cardona GR, Iwasaki T, Bramlett KS, Burris TP, Chin WW (January 2002). "Ser-884 adjacent to the LXXLL motif of coactivator TRBP defines selectivity for ERs and TRs". Molecular Endocrinology. 16 (1): 128–140. doi:10.1210/mend.16.1.0755. PMID 11773444.
  48. ^ Jung DJ, Na SY, Na DS, Lee JW (January 2002). "Molecular cloning and characterization of CAPER, a novel coactivator of activating protein-1 and estrogen receptors". The Journal of Biological Chemistry. 277 (2): 1229–1234. doi:10.1074/jbc.M110417200. PMID 11704680.
  49. ^ Migliaccio A, Castoria G, Di Domenico M, de Falco A, Bilancio A, Lombardi M, et al. (October 2000). "Steroid-induced androgen receptor-oestradiol receptor beta-Src complex triggers prostate cancer cell proliferation". The EMBO Journal. 19 (20): 5406–5417. doi:10.1093/emboj/19.20.5406. PMC 314017. PMID 11032808.
  50. ^ Slentz-Kesler K, Moore JT, Lombard M, Zhang J, Hollingsworth R, Weiner MP (October 2000). "Identification of the human Mnk2 gene (MKNK2) through protein interaction with estrogen receptor beta". Genomics. 69 (1): 63–71. doi:10.1006/geno.2000.6299. PMID 11013076.

Further reading edit

External links edit

This article incorporates text from the United States National Library of Medicine, which is in the public domain.