Conversion formulae
Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these; thus, given any two, any other of the elastic moduli can be calculated according to these formulas, provided both for 3D materials (first part of the table) and for 2D materials (second part).
3D formulae
K
=
{\displaystyle K=\,}
E
=
{\displaystyle E=\,}
λ らむだ
=
{\displaystyle \lambda =\,}
G
=
{\displaystyle G=\,}
ν にゅー
=
{\displaystyle \nu =\,}
M
=
{\displaystyle M=\,}
Notes
(
K
,
E
)
{\displaystyle (K,\,E)}
3
K
(
3
K
−
E
)
9
K
−
E
{\displaystyle {\tfrac {3K(3K-E)}{9K-E}}}
3
K
E
9
K
−
E
{\displaystyle {\tfrac {3KE}{9K-E}}}
3
K
−
E
6
K
{\displaystyle {\tfrac {3K-E}{6K}}}
3
K
(
3
K
+
E
)
9
K
−
E
{\displaystyle {\tfrac {3K(3K+E)}{9K-E}}}
(
K
,
λ らむだ
)
{\displaystyle (K,\,\lambda )}
9
K
(
K
−
λ らむだ
)
3
K
−
λ らむだ
{\displaystyle {\tfrac {9K(K-\lambda )}{3K-\lambda }}}
3
(
K
−
λ らむだ
)
2
{\displaystyle {\tfrac {3(K-\lambda )}{2}}}
λ らむだ
3
K
−
λ らむだ
{\displaystyle {\tfrac {\lambda }{3K-\lambda }}}
3
K
−
2
λ らむだ
{\displaystyle 3K-2\lambda \,}
(
K
,
G
)
{\displaystyle (K,\,G)}
9
K
G
3
K
+
G
{\displaystyle {\tfrac {9KG}{3K+G}}}
K
−
2
G
3
{\displaystyle K-{\tfrac {2G}{3}}}
3
K
−
2
G
2
(
3
K
+
G
)
{\displaystyle {\tfrac {3K-2G}{2(3K+G)}}}
K
+
4
G
3
{\displaystyle K+{\tfrac {4G}{3}}}
(
K
,
ν にゅー
)
{\displaystyle (K,\,\nu )}
3
K
(
1
−
2
ν にゅー
)
{\displaystyle 3K(1-2\nu )\,}
3
K
ν にゅー
1
+
ν にゅー
{\displaystyle {\tfrac {3K\nu }{1+\nu }}}
3
K
(
1
−
2
ν にゅー
)
2
(
1
+
ν にゅー
)
{\displaystyle {\tfrac {3K(1-2\nu )}{2(1+\nu )}}}
3
K
(
1
−
ν にゅー
)
1
+
ν にゅー
{\displaystyle {\tfrac {3K(1-\nu )}{1+\nu }}}
(
K
,
M
)
{\displaystyle (K,\,M)}
9
K
(
M
−
K
)
3
K
+
M
{\displaystyle {\tfrac {9K(M-K)}{3K+M}}}
3
K
−
M
2
{\displaystyle {\tfrac {3K-M}{2}}}
3
(
M
−
K
)
4
{\displaystyle {\tfrac {3(M-K)}{4}}}
3
K
−
M
3
K
+
M
{\displaystyle {\tfrac {3K-M}{3K+M}}}
(
E
,
λ らむだ
)
{\displaystyle (E,\,\lambda )}
E
+
3
λ らむだ
+
R
6
{\displaystyle {\tfrac {E+3\lambda +R}{6}}}
E
−
3
λ らむだ
+
R
4
{\displaystyle {\tfrac {E-3\lambda +R}{4}}}
2
λ らむだ
E
+
λ らむだ
+
R
{\displaystyle {\tfrac {2\lambda }{E+\lambda +R}}}
E
−
λ らむだ
+
R
2
{\displaystyle {\tfrac {E-\lambda +R}{2}}}
R
=
E
2
+
9
λ らむだ
2
+
2
E
λ らむだ
{\displaystyle R={\sqrt {E^{2}+9\lambda ^{2}+2E\lambda }}}
(
E
,
G
)
{\displaystyle (E,\,G)}
E
G
3
(
3
G
−
E
)
{\displaystyle {\tfrac {EG}{3(3G-E)}}}
G
(
E
−
2
G
)
3
G
−
E
{\displaystyle {\tfrac {G(E-2G)}{3G-E}}}
E
2
G
−
1
{\displaystyle {\tfrac {E}{2G}}-1}
G
(
4
G
−
E
)
3
G
−
E
{\displaystyle {\tfrac {G(4G-E)}{3G-E}}}
(
E
,
ν にゅー
)
{\displaystyle (E,\,\nu )}
E
3
(
1
−
2
ν にゅー
)
{\displaystyle {\tfrac {E}{3(1-2\nu )}}}
E
ν にゅー
(
1
+
ν にゅー
)
(
1
−
2
ν にゅー
)
{\displaystyle {\tfrac {E\nu }{(1+\nu )(1-2\nu )}}}
E
2
(
1
+
ν にゅー
)
{\displaystyle {\tfrac {E}{2(1+\nu )}}}
E
(
1
−
ν にゅー
)
(
1
+
ν にゅー
)
(
1
−
2
ν にゅー
)
{\displaystyle {\tfrac {E(1-\nu )}{(1+\nu )(1-2\nu )}}}
(
E
,
M
)
{\displaystyle (E,\,M)}
3
M
−
E
+
S
6
{\displaystyle {\tfrac {3M-E+S}{6}}}
M
−
E
+
S
4
{\displaystyle {\tfrac {M-E+S}{4}}}
3
M
+
E
−
S
8
{\displaystyle {\tfrac {3M+E-S}{8}}}
E
−
M
+
S
4
M
{\displaystyle {\tfrac {E-M+S}{4M}}}
S
=
±
E
2
+
9
M
2
−
10
E
M
{\displaystyle S=\pm {\sqrt {E^{2}+9M^{2}-10EM}}}
There are two valid solutions.
The plus sign leads to
ν にゅー
≥
0
{\displaystyle \nu \geq 0}
.
The minus sign leads to
ν にゅー
≤
0
{\displaystyle \nu \leq 0}
.
(
λ らむだ
,
G
)
{\displaystyle (\lambda ,\,G)}
λ らむだ
+
2
G
3
{\displaystyle \lambda +{\tfrac {2G}{3}}}
G
(
3
λ らむだ
+
2
G
)
λ らむだ
+
G
{\displaystyle {\tfrac {G(3\lambda +2G)}{\lambda +G}}}
λ らむだ
2
(
λ らむだ
+
G
)
{\displaystyle {\tfrac {\lambda }{2(\lambda +G)}}}
λ らむだ
+
2
G
{\displaystyle \lambda +2G\,}
(
λ らむだ
,
ν にゅー
)
{\displaystyle (\lambda ,\,\nu )}
λ らむだ
(
1
+
ν にゅー
)
3
ν にゅー
{\displaystyle {\tfrac {\lambda (1+\nu )}{3\nu }}}
λ らむだ
(
1
+
ν にゅー
)
(
1
−
2
ν にゅー
)
ν にゅー
{\displaystyle {\tfrac {\lambda (1+\nu )(1-2\nu )}{\nu }}}
λ らむだ
(
1
−
2
ν にゅー
)
2
ν にゅー
{\displaystyle {\tfrac {\lambda (1-2\nu )}{2\nu }}}
λ らむだ
(
1
−
ν にゅー
)
ν にゅー
{\displaystyle {\tfrac {\lambda (1-\nu )}{\nu }}}
Cannot be used when
ν にゅー
=
0
⇔
λ らむだ
=
0
{\displaystyle \nu =0\Leftrightarrow \lambda =0}
(
λ らむだ
,
M
)
{\displaystyle (\lambda ,\,M)}
M
+
2
λ らむだ
3
{\displaystyle {\tfrac {M+2\lambda }{3}}}
(
M
−
λ らむだ
)
(
M
+
2
λ らむだ
)
M
+
λ らむだ
{\displaystyle {\tfrac {(M-\lambda )(M+2\lambda )}{M+\lambda }}}
M
−
λ らむだ
2
{\displaystyle {\tfrac {M-\lambda }{2}}}
λ らむだ
M
+
λ らむだ
{\displaystyle {\tfrac {\lambda }{M+\lambda }}}
(
G
,
ν にゅー
)
{\displaystyle (G,\,\nu )}
2
G
(
1
+
ν にゅー
)
3
(
1
−
2
ν にゅー
)
{\displaystyle {\tfrac {2G(1+\nu )}{3(1-2\nu )}}}
2
G
(
1
+
ν にゅー
)
{\displaystyle 2G(1+\nu )\,}
2
G
ν にゅー
1
−
2
ν にゅー
{\displaystyle {\tfrac {2G\nu }{1-2\nu }}}
2
G
(
1
−
ν にゅー
)
1
−
2
ν にゅー
{\displaystyle {\tfrac {2G(1-\nu )}{1-2\nu }}}
(
G
,
M
)
{\displaystyle (G,\,M)}
M
−
4
G
3
{\displaystyle M-{\tfrac {4G}{3}}}
G
(
3
M
−
4
G
)
M
−
G
{\displaystyle {\tfrac {G(3M-4G)}{M-G}}}
M
−
2
G
{\displaystyle M-2G\,}
M
−
2
G
2
M
−
2
G
{\displaystyle {\tfrac {M-2G}{2M-2G}}}
(
ν にゅー
,
M
)
{\displaystyle (\nu ,\,M)}
M
(
1
+
ν にゅー
)
3
(
1
−
ν にゅー
)
{\displaystyle {\tfrac {M(1+\nu )}{3(1-\nu )}}}
M
(
1
+
ν にゅー
)
(
1
−
2
ν にゅー
)
1
−
ν にゅー
{\displaystyle {\tfrac {M(1+\nu )(1-2\nu )}{1-\nu }}}
M
ν にゅー
1
−
ν にゅー
{\displaystyle {\tfrac {M\nu }{1-\nu }}}
M
(
1
−
2
ν にゅー
)
2
(
1
−
ν にゅー
)
{\displaystyle {\tfrac {M(1-2\nu )}{2(1-\nu )}}}
2D formulae
K
2
D
=
{\displaystyle K_{\mathrm {2D} }=\,}
E
2
D
=
{\displaystyle E_{\mathrm {2D} }=\,}
λ らむだ
2
D
=
{\displaystyle \lambda _{\mathrm {2D} }=\,}
G
2
D
=
{\displaystyle G_{\mathrm {2D} }=\,}
ν にゅー
2
D
=
{\displaystyle \nu _{\mathrm {2D} }=\,}
M
2
D
=
{\displaystyle M_{\mathrm {2D} }=\,}
Notes
(
K
2
D
,
E
2
D
)
{\displaystyle (K_{\mathrm {2D} },\,E_{\mathrm {2D} })}
2
K
2
D
(
2
K
2
D
−
E
2
D
)
4
K
2
D
−
E
2
D
{\displaystyle {\tfrac {2K_{\mathrm {2D} }(2K_{\mathrm {2D} }-E_{\mathrm {2D} })}{4K_{\mathrm {2D} }-E_{\mathrm {2D} }}}}
K
2
D
E
2
D
4
K
2
D
−
E
2
D
{\displaystyle {\tfrac {K_{\mathrm {2D} }E_{\mathrm {2D} }}{4K_{\mathrm {2D} }-E_{\mathrm {2D} }}}}
2
K
2
D
−
E
2
D
2
K
2
D
{\displaystyle {\tfrac {2K_{\mathrm {2D} }-E_{\mathrm {2D} }}{2K_{\mathrm {2D} }}}}
4
K
2
D
2
4
K
2
D
−
E
2
D
{\displaystyle {\tfrac {4K_{\mathrm {2D} }^{2}}{4K_{\mathrm {2D} }-E_{\mathrm {2D} }}}}
(
K
2
D
,
λ らむだ
2
D
)
{\displaystyle (K_{\mathrm {2D} },\,\lambda _{\mathrm {2D} })}
4
K
2
D
(
K
2
D
−
λ らむだ
2
D
)
2
K
2
D
−
λ らむだ
2
D
{\displaystyle {\tfrac {4K_{\mathrm {2D} }(K_{\mathrm {2D} }-\lambda _{\mathrm {2D} })}{2K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}}}
K
2
D
−
λ らむだ
2
D
{\displaystyle K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}
λ らむだ
2
D
2
K
2
D
−
λ らむだ
2
D
{\displaystyle {\tfrac {\lambda _{\mathrm {2D} }}{2K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}}}
2
K
2
D
−
λ らむだ
2
D
{\displaystyle 2K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}
(
K
2
D
,
G
2
D
)
{\displaystyle (K_{\mathrm {2D} },\,G_{\mathrm {2D} })}
4
K
2
D
G
2
D
K
2
D
+
G
2
D
{\displaystyle {\tfrac {4K_{\mathrm {2D} }G_{\mathrm {2D} }}{K_{\mathrm {2D} }+G_{\mathrm {2D} }}}}
K
2
D
−
G
2
D
{\displaystyle K_{\mathrm {2D} }-G_{\mathrm {2D} }}
K
2
D
−
G
2
D
K
2
D
+
G
2
D
{\displaystyle {\tfrac {K_{\mathrm {2D} }-G_{\mathrm {2D} }}{K_{\mathrm {2D} }+G_{\mathrm {2D} }}}}
K
2
D
+
G
2
D
{\displaystyle K_{\mathrm {2D} }+G_{\mathrm {2D} }}
(
K
2
D
,
ν にゅー
2
D
)
{\displaystyle (K_{\mathrm {2D} },\,\nu _{\mathrm {2D} })}
2
K
2
D
(
1
−
ν にゅー
2
D
)
{\displaystyle 2K_{\mathrm {2D} }(1-\nu _{\mathrm {2D} })\,}
2
K
2
D
ν にゅー
2
D
1
+
ν にゅー
2
D
{\displaystyle {\tfrac {2K_{\mathrm {2D} }\nu _{\mathrm {2D} }}{1+\nu _{\mathrm {2D} }}}}
K
2
D
(
1
−
ν にゅー
2
D
)
1
+
ν にゅー
2
D
{\displaystyle {\tfrac {K_{\mathrm {2D} }(1-\nu _{\mathrm {2D} })}{1+\nu _{\mathrm {2D} }}}}
2
K
2
D
1
+
ν にゅー
2
D
{\displaystyle {\tfrac {2K_{\mathrm {2D} }}{1+\nu _{\mathrm {2D} }}}}
(
E
2
D
,
G
2
D
)
{\displaystyle (E_{\mathrm {2D} },\,G_{\mathrm {2D} })}
E
2
D
G
2
D
4
G
2
D
−
E
2
D
{\displaystyle {\tfrac {E_{\mathrm {2D} }G_{\mathrm {2D} }}{4G_{\mathrm {2D} }-E_{\mathrm {2D} }}}}
2
G
2
D
(
E
2
D
−
2
G
2
D
)
4
G
2
D
−
E
2
D
{\displaystyle {\tfrac {2G_{\mathrm {2D} }(E_{\mathrm {2D} }-2G_{\mathrm {2D} })}{4G_{\mathrm {2D} }-E_{\mathrm {2D} }}}}
E
2
D
2
G
2
D
−
1
{\displaystyle {\tfrac {E_{\mathrm {2D} }}{2G_{\mathrm {2D} }}}-1}
4
G
2
D
2
4
G
2
D
−
E
2
D
{\displaystyle {\tfrac {4G_{\mathrm {2D} }^{2}}{4G_{\mathrm {2D} }-E_{\mathrm {2D} }}}}
(
E
2
D
,
ν にゅー
2
D
)
{\displaystyle (E_{\mathrm {2D} },\,\nu _{\mathrm {2D} })}
E
2
D
2
(
1
−
ν にゅー
2
D
)
{\displaystyle {\tfrac {E_{\mathrm {2D} }}{2(1-\nu _{\mathrm {2D} })}}}
E
2
D
ν にゅー
2
D
(
1
+
ν にゅー
2
D
)
(
1
−
ν にゅー
2
D
)
{\displaystyle {\tfrac {E_{\mathrm {2D} }\nu _{\mathrm {2D} }}{(1+\nu _{\mathrm {2D} })(1-\nu _{\mathrm {2D} })}}}
E
2
D
2
(
1
+
ν にゅー
2
D
)
{\displaystyle {\tfrac {E_{\mathrm {2D} }}{2(1+\nu _{\mathrm {2D} })}}}
E
2
D
(
1
+
ν にゅー
2
D
)
(
1
−
ν にゅー
2
D
)
{\displaystyle {\tfrac {E_{\mathrm {2D} }}{(1+\nu _{\mathrm {2D} })(1-\nu _{\mathrm {2D} })}}}
(
λ らむだ
2
D
,
G
2
D
)
{\displaystyle (\lambda _{\mathrm {2D} },\,G_{\mathrm {2D} })}
λ らむだ
2
D
+
G
2
D
{\displaystyle \lambda _{\mathrm {2D} }+G_{\mathrm {2D} }}
4
G
2
D
(
λ らむだ
2
D
+
G
2
D
)
λ らむだ
2
D
+
2
G
2
D
{\displaystyle {\tfrac {4G_{\mathrm {2D} }(\lambda _{\mathrm {2D} }+G_{\mathrm {2D} })}{\lambda _{\mathrm {2D} }+2G_{\mathrm {2D} }}}}
λ らむだ
2
D
λ らむだ
2
D
+
2
G
2
D
{\displaystyle {\tfrac {\lambda _{\mathrm {2D} }}{\lambda _{\mathrm {2D} }+2G_{\mathrm {2D} }}}}
λ らむだ
2
D
+
2
G
2
D
{\displaystyle \lambda _{\mathrm {2D} }+2G_{\mathrm {2D} }\,}
(
λ らむだ
2
D
,
ν にゅー
2
D
)
{\displaystyle (\lambda _{\mathrm {2D} },\,\nu _{\mathrm {2D} })}
λ らむだ
2
D
(
1
+
ν にゅー
2
D
)
2
ν にゅー
2
D
{\displaystyle {\tfrac {\lambda _{\mathrm {2D} }(1+\nu _{\mathrm {2D} })}{2\nu _{\mathrm {2D} }}}}
λ らむだ
2
D
(
1
+
ν にゅー
2
D
)
(
1
−
ν にゅー
2
D
)
ν にゅー
2
D
{\displaystyle {\tfrac {\lambda _{\mathrm {2D} }(1+\nu _{\mathrm {2D} })(1-\nu _{\mathrm {2D} })}{\nu _{\mathrm {2D} }}}}
λ らむだ
2
D
(
1
−
ν にゅー
2
D
)
2
ν にゅー
2
D
{\displaystyle {\tfrac {\lambda _{\mathrm {2D} }(1-\nu _{\mathrm {2D} })}{2\nu _{\mathrm {2D} }}}}
λ らむだ
2
D
ν にゅー
2
D
{\displaystyle {\tfrac {\lambda _{\mathrm {2D} }}{\nu _{\mathrm {2D} }}}}
Cannot be used when
ν にゅー
2
D
=
0
⇔
λ らむだ
2
D
=
0
{\displaystyle \nu _{\mathrm {2D} }=0\Leftrightarrow \lambda _{\mathrm {2D} }=0}
(
G
2
D
,
ν にゅー
2
D
)
{\displaystyle (G_{\mathrm {2D} },\,\nu _{\mathrm {2D} })}
G
2
D
(
1
+
ν にゅー
2
D
)
1
−
ν にゅー
2
D
{\displaystyle {\tfrac {G_{\mathrm {2D} }(1+\nu _{\mathrm {2D} })}{1-\nu _{\mathrm {2D} }}}}
2
G
2
D
(
1
+
ν にゅー
2
D
)
{\displaystyle 2G_{\mathrm {2D} }(1+\nu _{\mathrm {2D} })\,}
2
G
2
D
ν にゅー
2
D
1
−
ν にゅー
2
D
{\displaystyle {\tfrac {2G_{\mathrm {2D} }\nu _{\mathrm {2D} }}{1-\nu _{\mathrm {2D} }}}}
2
G
2
D
1
−
ν にゅー
2
D
{\displaystyle {\tfrac {2G_{\mathrm {2D} }}{1-\nu _{\mathrm {2D} }}}}
(
G
2
D
,
M
2
D
)
{\displaystyle (G_{\mathrm {2D} },\,M_{\mathrm {2D} })}
M
2
D
−
G
2
D
{\displaystyle M_{\mathrm {2D} }-G_{\mathrm {2D} }}
4
G
2
D
(
M
2
D
−
G
2
D
)
M
2
D
{\displaystyle {\tfrac {4G_{\mathrm {2D} }(M_{\mathrm {2D} }-G_{\mathrm {2D} })}{M_{\mathrm {2D} }}}}
M
2
D
−
2
G
2
D
{\displaystyle M_{\mathrm {2D} }-2G_{\mathrm {2D} }\,}
M
2
D
−
2
G
2
D
M
2
D
{\displaystyle {\tfrac {M_{\mathrm {2D} }-2G_{\mathrm {2D} }}{M_{\mathrm {2D} }}}}