θ 10
In representation theory, a branch of mathematics,
Srinivasan (1968) introduced
Howe & Piatetski-Shapiro (1979) used the representations
References
[edit]- Adams, Jeffrey (2004), Hida, Haruzo; Ramakrishnan, Dinakar; Shahidi, Freydoon (eds.), "Theta-10", Contributions to automorphic forms, geometry, and number theory: a volume in honor of Joseph A. Shalika, American Journal of Mathematics, Supplement, Baltimore, MD: Johns Hopkins Univ. Press: 39–56, ISBN 978-0-8018-7860-2, MR 2058602
- Deshpande, Tanmay (2008). "An exceptional representation of Sp(4,Fq)". arXiv:0804.2722 [math.RT].
- Gol'fand, Ya. Yu. (1978), "An exceptional representation of Sp(4,Fq)", Functional Analysis and Its Applications, 12 (4), Institute of Problems in Management, Academy of Sciences of the USSR. Translated from Funktsional'nyi Analiz i Ego Prilozheniya: 83–84, doi:10.1007/BF01076387, MR 0515634, S2CID 122223668.
- Howe, Roger; Piatetski-Shapiro, I. I. (1979), "A counterexample to the "generalized Ramanujan conjecture" for (quasi-) split groups", in Borel, Armand; Casselman, W. (eds.), Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, Providence, R.I.: American Mathematical Society, pp. 315–322, ISBN 978-0-8218-1435-2, MR 0546605
- Kim, Ju-Lee; Piatetski-Shapiro, Ilya I. (2001), "Quadratic base change of
θ 10", Israel Journal of Mathematics, 123: 317–340, doi:10.1007/BF02784134, MR 1835303, S2CID 121587192 - Srinivasan, Bhama (1968), "The characters of the finite symplectic group Sp(4,q)", Transactions of the American Mathematical Society, 131 (2): 488–525, doi:10.2307/1994960, ISSN 0002-9947, JSTOR 1994960, MR 0220845