AlexNet
AlexNet は
AlexNet は、2012
歴史 的 背景
[GPU で
AlexNet の
2015
ネットワーク・デザイン
[AlexNet には 8 つのレイヤーが
影響
[AlexNet は、コンピュータビジョンで
関連 項目
[脚注
[- ^ “The data that transformed AI research—and possibly the world”. 2021
年 6月 4日 閲覧 。 - ^ a b c d Krizhevsky, Alex; Sutskever, Ilya; Hinton, Geoffrey E. (2017-05-24). “ImageNet classification with deep convolutional neural networks”. Communications of the ACM 60 (6): 84–90. doi:10.1145/3065386. ISSN 0001-0782 .
- ^ “ILSVRC2012 Results”. 2021
年 6月 4日 閲覧 。 - ^ Kumar Chellapilla; Sid Puri; Patrice Simard (2006). “High Performance Convolutional Neural Networks for Document Processing”. In Lorette, Guy. Tenth International Workshop on Frontiers in Handwriting Recognition. Suvisoft
- ^ Cireșan, Dan; Ueli Meier; Jonathan Masci; Luca M. Gambardella; Jurgen Schmidhuber (2011). “Flexible, High Performance Convolutional Neural Networks for Image Classification”. Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence-Volume Volume Two 2: 1237–1242 17 November 2013
閲覧 。. - ^ “IJCNN 2011 Competition result table” (
英語 ). OFFICIAL IJCNN2011 COMPETITION (2010年 ). 2019年 1月 14日 閲覧 。 - ^ Schmidhuber (17 March 2017). “History of computer vision contests won by deep CNNs on GPU” (
英語 ). 14 January 2019閲覧 。 - ^ a b Schmidhuber, Jürgen (2015). “Deep Learning”. Scholarpedia 10 (11): 1527–54. doi:10.1162/neco.2006.18.7.1527. PMID 16764513 .
- ^ Cireșan, Dan; Meier, Ueli; Schmidhuber, Jürgen (June 2012). Multi-column deep neural networks for image classification. New York, NY: Institute of Electrical and Electronics Engineers (IEEE). 3642–3649. arXiv:1202.2745. doi:10.1109/CVPR.2012.6248110. ISBN 978-1-4673-1226-4. OCLC 812295155
- ^ LeCun, Y.; Boser, B.; Denker, J. S.; Henderson, D.; Howard, R. E.; Hubbard, W.; Jackel, L. D. (1989). “Backpropagation Applied to Handwritten Zip Code Recognition”. Neural Computation (MIT Press - Journals) 1 (4): 541–551. doi:10.1162/neco.1989.1.4.541. ISSN 0899-7667. OCLC 364746139 .
- ^ LeCun, Yann; Léon Bottou; Yoshua Bengio; Patrick Haffner (1998). “Gradient-based learning applied to document recognition”. Proceedings of the IEEE 86 (11): 2278–2324. doi:10.1109/5.726791 October 7, 2016
閲覧 。. - ^ Fukushima, K. (2007). “Neocognitron”. Scholarpedia 2 (1): 1717. Bibcode: 2007SchpJ...2.1717F. doi:10.4249/scholarpedia.1717.
- ^ Fukushima, Kunihiko (1980). “Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position”. Biological Cybernetics 36 (4): 193–202. doi:10.1007/BF00344251. PMID 7370364 16 November 2013
閲覧 。. - ^ Weng, J; Ahuja, N; Huang, TS (1993). “Learning recognition and segmentation of 3-D objects from 2-D images”. Proc. 4th International Conf. Computer Vision: 121–128.
- ^ He, Kaiming; Zhang, Xiangyu; Ren, Shaoqing; Sun, Jian (2016). “Deep Residual Learning for Image Recognition.”. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR): 770–778. arXiv:1512.03385. doi:10.1109/CVPR.2016.90. ISBN 978-1-4673-8851-1.
- ^ Deshpande. “The 9 Deep Learning Papers You Need To Know About (Understanding CNNs Part 3)”. adeshpande3.github.io. 2018
年 12月4日 閲覧 。