(Translated by https://www.hiragana.jp/)
A160093 - OEIS
login
A160093
Number of digits in n, excluding any trailing zeros.
27
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 3, 3, 3, 3, 3
OFFSET
1,11
LINKS
FORMULA
From Hieronymus Fischer, Jun 08 2012: (Start)
With m = floor(log_10(n)), frac(x) = x-floor(x):
a(n) = 1 + Sum_{j=0..m} ceiling(frac(n/10^j)).
a(n) = 1 - Sum_{j=1..m} (floor(-frac(n/10^j))).
a(n)= A055642(n) + A054899(n-1) - A054899(n).
G.f.: (x/(1-x)) + (1/(1-x))*Sum_{j>0} x^(10^j+1)*(1 - x^(10^j-1))/(1-x^10^j). (End)
a(n) = A055642(A004086(n)). - Indranil Ghosh, Jan 11 2017
a(n) = A055642(A004151(n)). - Amiram Eldar, Sep 14 2020
EXAMPLE
a(1060000) = 3 because discarding the trailing zeros from 1060000 leaves 106, which is a 3-digit number.
MATHEMATICA
lnzd[n_]:=Module[{spl=Last[Split[IntegerDigits[n]]]}, If[!MemberQ[ spl, 0], IntegerLength[n], IntegerLength[n]-Length[spl]]]; Array[lnzd, 110] (* Harvey P. Dale, Jun 05 2013 *)
Table[IntegerLength[n] - IntegerExponent[n, 10], {n, 100}] (* Amiram Eldar, Sep 14 2020 *)
PROG
(Python)
def A160093(n):
return len(str(int(str(n)[::-1]))) # Indranil Ghosh, Jan 11 2017
(PARI) a(n)=if(n==0, 1, #digits(n/10^valuation(n, 10))) \\ Joerg Arndt, Jan 11 2017
(PARI) a(n)=logint(n, 10)+1-valuation(n, 10) \\ Charles R Greathouse IV, Jan 12 2017
KEYWORD
base,easy,nonn
AUTHOR
Anonymous, May 01 2009
EXTENSIONS
Simpler definition and changed example from Jon E. Schoenfield, Feb 15 2014
STATUS
approved