Сопряжённый оператор
Сопряжённый оператор — обобщение понятия эрмитово-сопряжённой матрицы для бесконечномерных пространств.
Линейная алгебра
[править | править код]Преобразование называется сопряжённым линейному преобразованию , если для любых векторов и выполнено равенство . У каждого преобразования существует единственное сопряжённое преобразование. Его матрица в базисе определяется по матрице преобразования формулой , если пространство евклидово, и формулой в унитарном пространстве. здесь обозначает матрицу Грама выбранного базиса. Если он ортонормированный, эти формулы принимают вид и соответственно.
Общее линейное пространство
[править | править код]Пусть — линейные пространства, а — сопряжённые линейные пространства (пространства линейных функционалов, определённых на ). Тогда для любого линейного оператора и любого линейного функционала определён линейный функционал — суперпозиция и : . Отображение называется сопряжённым линейным оператором и обозначается .
Если кратко, то , где — действие функционала на вектор .
Топологическое линейное пространство
[править | править код]Пусть — топологические линейные пространства, а — сопряжённые топологические линейные пространства (пространства непрерывных линейных функционалов, определённых на ). Для любого непрерывного линейного оператора и любого непрерывного линейного функционала определён непрерывный линейный функционал — суперпозиция и : . Нетрудно проверить, что отображение линейно и непрерывно. Оно называется сопряжённым оператором и обозначается также .
Банахово пространство
[править | править код]Пусть — непрерывный линейный оператор, действующий из банахова пространства в банахово пространство [1] и пусть — сопряжённые пространства. Обозначим . Если — фиксировано, то — линейный непрерывный функционал в . Таким образом, для определён линейный непрерывный функционал из , поэтому определён оператор , такой что .
называется сопряжённым оператором. Аналогично можно определять сопряжённый оператор к линейному неограниченному оператору, но он будет определён не на всём пространстве.
Для справедливы следующие свойства:
- Оператор — линейный.
- Если — линейный непрерывный оператор, то также линейный непрерывный оператор.
- Пусть — нулевой оператор, а — единичный оператор. Тогда .
- .
- .
- .
- .
Гильбертово пространство
[править | править код]В гильбертовом пространстве теорема Рисса даёт отождествление пространства со своим сопряжённым, поэтому для оператора равенство определяет сопряжённый оператор . Здесь — скалярное произведение в пространстве .
См. также
[править | править код]Примечания
[править | править код]- ↑ Пространства предполагаются комплексными
Литература
[править | править код]- Шефер Х. Топологические векторные пространства. — М.: Мир, 1971.
- Ворович И.И., Лебедев Л.П. Функциональный анализ и его приложения в механике сплошной среды. — М.: Вузовская книга, 2000. — 320 с.
- Треногин В. А. Функциональный анализ. — М.: Наука, 1980. — 495 с.
- Функциональный анализ / редактор С.Г.Крейн. — 2-е, переработанное и дополненное. — М.: Наука, 1972. — 544 с. — (Справочная математическая библиотека).
- Халмош П. Конечномерные векторные пространства = Finite-dimensional vector spaces. — М.: Физматгиз, 1963. — 264 с.
- Шилов Г.Е. Математический анализ (функции одного переменного), часть 3. — М.: Наука, 1970. — 352 с.
- Вайнберг М. М. Функциональный анализ. — М.: Просвещение, 1979. — 128 с.