Numerical analysis
Appearance
Numerical analysis is an area thon studies computer algorithms tae get approximate solutions for mathematical problems[1][2][3]. It is usit tae compute integrals[4] an solvin pairtial differential equations[5][6]. It can also solve problems i linear algebra[7][8][9]. Today, thare are many famous numerical analysts such as Leonid Kantorovich.
See also
[eedit | eedit soorce]Areas
[eedit | eedit soorce]- MATLAB, INTLAB, GNU Octave, Scilab (famous saftware for numerical analysis[10])
- Monte Carlo method
- numerical control
- numerical digit
- numerical integration
- numerical linear algebra
- numerical methods for ordinary differential equations
- numerical methods for pairtial differential equations
- validatit numerics
- Wolfram Mathematica
Experts
[eedit | eedit soorce]- Alan Turing
- John von Neumann
- Leonid Kantorovich
- Masaaki Sugihara
- Masao Iri
- Masatake Mori
- Peter Deuflhard
- Shinichi Oishi
References
[eedit | eedit soorce]- ↑ Linz, P. (2019). Theoretical numerical analysis. Courier Dover Publications.
- ↑ Greenspan, D. (2018). Numerical Analysis. CRC Press.
- ↑ Stoer, J., & Bulirsch, R. (2013). Introduction to numerical analysis. Springer Science & Business Media.
- ↑ Davis, P. J., & Rabinowitz, P. (2007). Methods of numerical integration. Courier Corporation.
- ↑ Ames, W. F. (2014). Numerical methods for partial differential equations. Academic Press.
- ↑ M. Nakao, M. Plum, Y. Watanabe (2019) Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations (Springer Series in Computational Mathematics)
- ↑ Demmel, J. W. (1997). Applied numerical linear algebra. Society for Industrial and Applied Mathematics.
- ↑ Ciarlet, P. G., Miara, B., & Thomas, J. M. (1989). Introduction to numerical linear algebra and optimization. Cambridge University Press.
- ↑ Trefethen, Lloyd; Bau III, David (1997). Numerical Linear Algebra (1st ed.). Philadelphia: Society for Industrial and Applied Mathematics.
- ↑ Quarteroni, A., Saleri, F., & Gervasio, P. (2006). Scientific computing with MATLAB and Octave. Berlin: Springer.
Further readin
[eedit | eedit soorce]- Higham, Nicholas J. (1996). Accuracy and Stability of Numerical Algorithms. Society for Industrial and Applied Mathematics.
- Leader, Jeffery J. (2004). Numerical Analysis and Scientific Computation. Addison Wesley.
- Quarteroni, A., Sacco, R., & Saleri, F. (2010). Numerical mathematics. Springer Science & Business Media.
- Conte, S. D., & De Boor, C. (2017). Elementary numerical analysis: an algorithmic approach. Society for Industrial and Applied Mathematics.