(Translated by https://www.hiragana.jp/)
Primideal – Wikipedia Hoppa till innehållet

Primideal

Från Wikipedia
Den utskrivbara versionen stöds inte längre och kanske innehåller renderingsfel. Uppdatera din webbläsares bokmärken och använd standardutskriftsfunktionen istället.

Ett primideal är ett ideal PR i en kommutativ ring R, sådant att:

för alla a och b i R.

Om ringen R inte är kommutativ är P ett primideal, om det är ett äkta ideal och om det för ideal och sådana att

gäller att antingen eller .

Samband mellan primideal och primelement

I en heltalsring H, finns en påtaglig relation mellan primideal och primelement.

Ett ideal skilt från nollidealet, { }, är ett primideal om och endast om är ett primelement i .

Bevis: Med utgångspunkt ifrån att P är ett primideal och skilt från nollidealet följer direkt, att p ≠ 0 och att p ej är inverterbart. Om p|ab tillhör ab P, vilket medför att a eller b tillhör P. Detta är liktydigt med att p|a eller p|b och således att p är ett primelement.

Omvänt fås att om p är ett primelement så följer, eftersom p ≠ 0 och p ej är inverterbart, att P varken är lika med nollidealet eller H. Om ab tillhör P så är det liktydigt med att p|ab och härav följer att p|a eller p|b, det vill säga att a eller b tillhör P. Alltså är P ett primideal.

Exempel

  • I ringen av heltal, , är ett primideal antingen nollidealet eller på formen (alla multiplar av p), där p är ett primtal.
  • Ett maximalt ideal är ett primideal. Det omvända gäller dock inte.

Egenskaper

  • Om R är en kommutativ ring med etta och P är ett ideal i R så är P ett primideal om och endast om kvotringen R/P är ett integritetsområde.
  • Varje kommutativ ring med enhet har minst ett primideal, en direkt följd av Krulls sats.
  • Urbilden av ett primideal för en ringhomomorfi är ett primideal.

Källor

  • McCoy, N.H. Rings and Ideals, Carus Monograph Series, No. 8. Open Court Publishing Company, La Salle, Illinois, 1948.
  • Atiyah, Michael Francis; I.G. Macdonald (1969). Introduction to Commutative Algebra. Addison-Wesley 
  • Lam, T.Y. (1991). A First Course in Noncommutative Rings. Springer Verlag. ISBN 0-387-97523-3