Період 1 періодичної системи елементів
H | He | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Li | Be | B | C | N | O | F | Ne | |||||||||||
Na | Mg | Al | Si | P | S | Cl | Ar | |||||||||||
K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | |
Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | |
Cs | Ba | * | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn | |
Fr | Ra | ** | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Uut | Fl | Uup | Uuh | Uus | Uuo | |
* | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | |||
** | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr |
Перший період періодичної системи |
До першого періоду періодичної системи відносяться елементи першого рядка (або першого періоду) періодичної системи хімічних елементів. Усі атоми першого періоду періодичної системи мають одну електронну оболонку і ця електронна оболонка може бути зайнята максимально 2 електронами. Тому до першого періоду періодичної системи належать лише два елементи. Будова періодичної таблиці заснована на рядках для ілюстрації повторюваних (періодичних) трендів у хімічних властивостях елементів при збільшенні атомного номера: новий рядок починається тоді, коли хімічні властивості повторюються, що означає попадання елементів з аналогічними властивостями у той же вертикальний стовпець. Перший період містить найменше елементів (їх всього два: водень і гелій) у порівнянні з іншими рядками таблиці. Отже дане положення пояснюється сучасною теорією будови атома.
Елементи
ред.Хімічний елемент Група Електронна конфігурація 1 H Водень Неметал 1s1 2 He Гелій Інертний газ 1s2
Водень
ред.Водень (Н) є хімічним елементом з атомним номером 1. При нормальній температурі і тиску водень являє собою легкозаймистий двоатомний газ без кольору, запаху і смаку, неметал, з молекулярною формулою H2. Водень є найлегшим елементом з атомною масою 1,00794 а. е. м.[1]
Водень є розповсюдженим хімічним елементом. Він становить приблизно 75% маси всіх елементів у Всесвіті.[2] Зірки у головній послідовності в основному складаються з водню у стані плазми. У чистому вигляді водень досить рідко зустрічається на Землі, тому у промислових масштабах він виробляється з таких вуглеводеньів, як метан. Більшість чистого водню використовується «негайно» (мається на увазі локально на виробничому майданчику), найбільшими майже рівними ринками є переробка викопного палива, наприклад, гідрокрекінг, і виробництво аміаку, в основному для ринку добрив. Водень можна отримати також з води за допомогою процесу електролізу, але при цьому виробництво водню виходить комерційно значно дорожче, ніж з природного газу.[3]
Найбільш поширений ізотоп водню природного походження, відомий як протій, має один протон і не має жодного нейтрону.[4] Також відомі ізотопи водню з одним нейтроном та одним протоном (дейтерій) та двома нейтронами і одним протоном (тритій). У йонних сполуках водень може або набути позитивний заряд, ставши катіоном, втративши електрон, або набути негативний заряд, ставши аніоном. Анінон водню називають гідридом. Водень може вступати у з'єднання з більшістю елементів, він присутній у воді і у більшості органічних речовин.[5] Він грає особливо важливу роль у хімії кислот і основ, у якій багато реакцій являють собою обмін протонами між молекулами розчину.[6] Оскільки тільки для нейтрального атома рівняння Шредінгера може бути вирішено аналітично, вивчення енергетики та спектру атома водню відіграє ключову роль у розвитку квантової механіки.[7]
Взаємодія водню з різними металами дужа важлива у металургії, оскільки багато металів зазнають водневе розтріскування,[8] що робить вирішення задачі безпечного зберігання водню і його використання як палива актуальним.[9] Водень має властивість добре розчинятись у багатьох з'єднаннях рідкоземельних та перехідних металах,[10] при цьому він може розчинятися як у кристалічних, так і в аморфних металах. Розчинність водню змінюється при наявності локальних пошкоджень кристалічної решітки металу або при наявності домішок.[11]
Гелій
ред.Гелій (He) є одноатомним інертним хімічним елементом з атомним номером 2, без кольору, смаку і запаху, нетоксичним, що знаходиться на початку групи благородних газів в періодичній таблиці.[12] Його температура кипіння і плавлення є найнижчими серед всіх елементів, він існує тільки у вигляді газу, за винятком екстремальних умов.[13]
Гелій був відкритий в 1868 році французьким астрономом П'єром Жансеном, який першим виявив цей елемент по наявності невідомої раніше жовтої спектральної лінії сонячного світла під час сонячного затемнення.[14] У 1903 році великі запаси гелію були знайдені у родовищі природного газу в США, на сьогодні ця країна є найбільшим постачальником цього газу.[15] Гелій використовується в кріогенній техніці,[16] у системах глибоководного дихання,[17] для охолодження надпровідних магнітів, у гелієвому датуванні,[18] для надування повітряних кульок,[19] для підйому дирижаблів,[20] і як захисний газ для промислових цілей, таких як електрозварювання і вирощування кремнієвих пластин[21]. Вдихаючи невеликий обсяг газу, можна на час змінити тембр і якість людського голосу.[22] Поведінка рідкого гелію-4 у двох рідких фазах гелій I і гелій II має важливе значення для дослідників, які вивчають квантову механіку і явища надплинності зокрема,[23] а також для тих, хто досліджує ефекти при температурах, близьких до абсолютного нуля, наприклад, надпровідність.[24]
Гелій є другим за легкістю елементом і другим за поширеністю у Всесвіті, що ми бачимо.[25] Більшість гелію утворилося під час Великого вибуху, але і новий гелій постійно створюється у результаті злиття ядер водню усередині зірок.[26] На Землі гелій відносно рідко зустрічається, він утворюється у результаті природного розпаду деяких радіоактивних елементів,[27] тому що альфа-частинки, які при цьому випускаються, складаються з ядер гелію. Цей радіогенний гелій є складовою частиною природного газу в концентраціях до семи відсотків обсягу,[28] з якого він видобувається у комерційних масштабах у процесі низькотемпературної сепарації, так званої фракційної дистиляції.[29]
У традиційному зображенні періодичної таблиці гелій знаходиться над неоном, що відображає його статус благородного газу, проте іноді, як, наприклад, у таблиці Менделєєва Джанет, він знаходиться над берилієм, що відображає будову його електронної конфігурації.
Примітки
ред.- ↑ Hydrogen – Energy. Energy Information Administration. Архів оригіналу за 5 лютого 2009. Процитовано 24 січня 2013.
- ↑ Palmer, David (13 листопада 1997). Hydrogen in the Universe. NASA. Архів оригіналу за 29 жовтня 2014. Процитовано 24 січня 2013.
- ↑ Staff (2007). Hydrogen Basics — Production. Florida Solar Energy Center. Архів оригіналу за 22 жовтня 2018. Процитовано 24 січня 2013.
- ↑ Sullivan, Walter (11 березня 1971). Fusion Power Is Still Facing Formidable Difficulties. The New York Times.
- ↑ hydrogen. Encyclopædia Britannica. 2008.
- ↑ Eustis, S. N.; Radisic, D; Bowen, KH; Bachorz, RA; Haranczyk, M; Schenter, GK; Gutowski, M (15 лютого 2008). Electron-Driven Acid-Base Chemistry: Proton Transfer from Hydrogen Chloride to Ammonia. Science. 319 (5865): 936—939. doi:10.1126/science.1151614. PMID 18276886.
- ↑ Time-dependent Schrödinger equation. Encyclopædia Britannica. 2008.
- ↑ Rogers, H. C. (1999). Hydrogen Embrittlement of Metals. Science. 159 (3819): 1057—1064. doi:10.1126/science.159.3819.1057. PMID 17775040.
- ↑ Christensen, C. H.; Nørskov, J. K.; Johannessen, T. (9 липня 2005). Making society independent of fossil fuels — Danish researchers reveal new technology. Technical University of Denmark. Архів оригіналу за січень 7, 2010. Процитовано січень 24, 2013.
- ↑ Takeshita, T.; Wallace, W.E.; Craig, R.S. (1974). Hydrogen solubility in 1:5 compounds between yttrium or thorium and nickel or cobalt. Inorganic Chemistry. 13 (9): 2282—2283. doi:10.1021/ic50139a050.
- ↑ Kirchheim, R. (1988). Hydrogen solubility and diffusivity in defective and amorphous metals. Progress in Materials Science. 32 (4): 262—325. doi:10.1016/0079-6425(88)90010-2.
- ↑ Helium: the essentials. WebElements. Архів оригіналу за 4 квітня 2019. Процитовано 24 січня 2013.
- ↑ Helium: physical properties. WebElements. Архів оригіналу за 25 листопада 2017. Процитовано 24 січня 2013.
- ↑ Pierre Janssen. MSN Encarta. Архів оригіналу за 29 жовтня 2009. Процитовано 24 січня 2013.
- ↑ Theiss, Leslie (18 січня 2007). Where Has All the Helium Gone?. Bureau of Land Management. Архів оригіналу за 25 липня 2008. Процитовано 24 січня 2013.
- ↑ Timmerhaus, Klaus D. (6 жовтня 2006). Cryogenic Engineering: Fifty Years of Progress. Springer. ISBN 0-387-33324-X.
- ↑ Copel, M. (September 1966). Helium voice unscrambling. Audio and Electroacoustics. 14 (3): 122—126. doi:10.1109/TAU.1966.1161862.
- ↑ helium dating. Encyclopædia Britannica. 2008.
- ↑ Brain, Marshall. How Helium Balloons Work. How Stuff Works. Архів оригіналу за 6 грудня 2015. Процитовано 24 січня 2013.
- ↑ Jiwatram, Jaya (10 липня 2008). The Return of the Blimp. Popular Science. Архів оригіналу за 22 серпня 2020. Процитовано 24 січня 2013.
- ↑ When good GTAW arcs drift; drafty conditions are bad for welders and their GTAW arcs. Welding Design & Fabrication. 1 лютого 2005.
- ↑ Montgomery, Craig (4 вересня 2006). Why does inhaling helium make one's voice sound strange?. Scientific American. Архів оригіналу за 3 жовтня 2020. Процитовано 24 січня 2013.
- ↑ Probable Discovery Of A New, Supersolid, Phase Of Matter. Science Daily. 3 вересня 2004. Архів оригіналу за 14 жовтня 2012. Процитовано 24 січня 2013.
- ↑ Browne, Malcolm W. (21 серпня 1979). Scientists See Peril In Wasting Helium; Scientists See Peril in Waste of Helium. The New York Times.
- ↑ Helium: geological information. WebElements. Архів оригіналу за 4 серпня 2020. Процитовано 24 січня 2013.
- ↑ Cox, Tony (3 лютого 1990). Origin of the chemical elements. New Scientist. Архів оригіналу за 16 жовтня 2012. Процитовано 24 січня 2013.
- ↑ Helium supply deflated: production shortages mean some industries and partygoers must squeak by. Houston Chronicle. 5 листопада 2006.
- ↑ Brown, David (2 лютого 2008). Helium a New Target in New Mexico. American Association of Petroleum Geologists. Архів оригіналу за 4 березня 2012. Процитовано 24 січня 2013.
- ↑ Voth, Greg (1 грудня 2006). Where Do We Get the Helium We Use?. The Science Teacher.
Посилання
ред.- С. И. Левченков. Краткий очерк истории химии. [Архівовано 30 січня 2013 у Wayback Machine.] (рос.)
- Bloch, D. R. Organic Chemistry Demystified. (англ.)
Джерела
ред.- Greenwood N. N., Earnshaw A. Chemistry of the Elements. — 2nd. — Oxford : Butterworth-Heinemann, 1997. — 1341 p. — ISBN 0-7506-3365-4. (англ.)
- Cotton F. A., Murillo C. A., Bochmann M. Advanced inorganic chemistry. — 6th — New York: Wiley-Interscience, 1999. — ISBN 0-471-19957-5. (англ.)
- Housecroft C. E., Sharpe, A. G. Inorganic Chemistry. — 3rd. — Prentice Hall, 2008. — ISBN 978-0-13-175553-6. (англ.)
- Ахметов Н. С. Общая и неорганическая химия. — М. : Высшая школа, 2001. — ISBN 5-06-003363-5. (рос.)
- Лидин Р. А. Справочник по общей и неорганической химии. — М. : КолосС, 2008. — ISBN 978-5-9532-0465-1. (рос.)
- Некрасов Б. В. Основы общей и неорганической химии. — М. : Лань, 2004. — ISBN 5-8114-0501-4. (рос.)
- Спицын В. И., Мартыненко Л. И. Неорганическая химия. — М. : МГУ, 1991, 1994. (рос.)
- Турова Н. Я. Неорганическая химия в таблицах. — М. : Высший химический колледж РАН, 2002. — ISBN 5-88711-168-2. (рос.)
Це незавершена стаття з хімії. Ви можете допомогти проєкту, виправивши або дописавши її. |