(Translated by https://www.hiragana.jp/)
鋯鈦酸鉛 - 维基百科,自由的百科全书 とべ转到内容ないよう

鋯鈦さんなまり

维基百科ひゃっか自由じゆうてき百科ひゃっかぜん
鋯鈦さんなまり
IUPACめい
鋯鈦さんなまり
别名 鈦鋯さんなまり
识别
CASごう 12626-81-2  checkY
PubChem 159452
SMILES
 
  • [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2]
せい
化学かがくしき Pb[Zr
x
Ti
1-x
]O
3
(0≤x≤1)
尔质りょう 303.065 ~ 346.4222 g/mol g·mol⁻¹
危险せい
GHS危险せい符号ふごう
《全球化学品统一分类和标签制度》(简称“GHS”)中有害物质的标签图案《全球化学品统一分类和标签制度》(简称“GHS”)中对人体有害物质的标签图案《全球化学品统一分类和标签制度》(简称“GHS”)中对环境有害物质的标签图案
GHS提示ていじ 危险
H-术语 H302, H332, H360, H373, H410
P-术语 P201, P202, P260, P261, P264, P270, P271, P273, P281, P301+312, P304+312, P304+340, P308+313, P312
わかちゅうあかり所有しょゆうすうすえひとし出自しゅつじ标准じょう态(25 ℃,100 kPa)した

鋯鈦さんなまりいちしゅ無機むき化合かごうぶつ化學かがくしきPb[Zr
x
Ti
1-x
]O
3
(0≤x≤1),通常つうじょう縮寫しゅくしゃためPZTLead Zirconium Titanate),いちしゅ白色はくしょくいたり灰白色かいはくしょく固體こたい。鋯鈦さんなまりいちしゅ有明ありあけあらわあつでんこうおうてきすえ瓷鈣鈦礦材料ざいりょう,這意あじちょとうほどこせ電場でんじょう化合かごうぶつかい改變かいへん形狀けいじょうようちょうこえかわのう諧振ひとし

鋯鈦さんなまり於1952ねん東京工業大學とうきょうこうぎょうだいがく發現はつげんあずかせんぜん發現はつげん有明ありあけあらわあつでんこうおうてき鈦酸鋇そう,鋯鈦さんなまり表現ひょうげんさらだかれいさとたびなみさらこのみ(較高)てき工作こうさく溫度おんどすえ瓷鋯鈦酸なまりいん物理ぶつり強度きょうど化學かがく惰性だせい相對そうたい較低てき製造せいぞう成本なりもと而廣泛應用おうようすえ瓷鋯鈦酸なまりさい常用じょうようてきあつでんすえ瓷。[1]最近さいきんいくねん許多きょた國家こっか立法りっぽうげんせい商業しょうぎょう產品さんぴん使用しようなまりいん此不しょうひとひろ找鋯鈦酸なまりてきがえ代品だいひん[2]

でんすえ瓷特せい

[编辑]
やめかくれぞう部分ぶぶん翻譯ほんやく内容ないよう歡迎かんげい參與さんよ翻譯ほんやく

Being piezoelectric, lead zirconate titanate develops a voltage (or potential difference) across two of its faces when compressed (useful for sensor applications), and physically changes shape when an external electric field is applied (useful for actuator applications). The relative permittivity of lead zirconate titanate can range from 300 to 20000, depending upon orientation and doping.[らいみなもと請求せいきゅう]

Being pyroelectric, this material develops a voltage difference across two of its faces under changing temperature conditions; consequently, lead zirconate titanate can be used as a heat sensor. Lead zirconate titanate is also ferroelectric, which means that it has a spontaneous electric polarization (electric dipole) that can be reversed in the presence of an electric field.

The material features an extremely large relative permittivity at the morphotropic phase boundary (MPB) near x = 0.52.[3]

Some formulations are ohmic until at least 250 kV/cm (25 MV/べい), after which current grows exponentially with field strength before reaching avalanche breakdown; but lead zirconate titanate exhibits time-dependent dielectric breakdown — breakdown may occur under constant-voltage stress after minutes or hours, depending on voltage and temperature, so its dielectric strength depends on the time scale over which it is measured.[4] Other formulations have dielectric strengths measured in the 8–16 MV/べい range.[5]

Uses

[编辑]
Lead zirconate titanate ultrasound transducer

Lead zirconate titanate-based materials are components of ceramic capacitors and STM/AFM actuators (tubes).

Lead zirconate titanate is used to make ultrasound transducers and other sensors and actuators, as well as high-value ceramic capacitors and FRAM chips. Lead zirconate titanate is also used in the manufacture of ceramic resonators for reference timing in electronic circuitry. In 1975 Sandia National Laboratories created anti-flash goggles featuring PLZT to protect aircrew from burns and blindness in case of a nuclear explosion.[6] The PLZT lenses could turn opaque in less than 150 microseconds.

Commercially, it is usually not used in its pure form, rather it is doped with either acceptors, which create oxygen (anion) vacancies, or donors, which create metal (cation) vacancies and facilitate domain wall motion in the material. In general, acceptor doping creates hard lead zirconate titanate, while donor doping creates soft lead zirconate titanate. Hard and soft lead zirconate titanate generally differ in their piezoelectric constants. Piezoelectric constants are proportional to the polarization or to the electrical field generated per unit of mechanical stress, or alternatively is the mechanical strain produced by per unit of electric field applied. In general, soft lead zirconate titanate has a higher piezoelectric constant, but larger losses in the material due to internal friction. In hard lead zirconate titanate, domain wall motion is pinned by the impurities, thereby lowering the losses in the material, but at the expense of a reduced piezoelectric constant.

Varieties

[编辑]

One of the commonly studied chemical composition is PbZr
0.52
Ti
0.48
O
3
. The increased piezoelectric response and poling efficiency near to x = 0.52 is due to the increased number of allowable domain states at the MPB. At this boundary, the 6 possible domain states from the tetragonal phase ⟨100⟩ and the 8 possible domain states from the rhombohedral phase ⟨111⟩ are equally favorable energetically, thereby allowing a maximum 14 possible domain states.

Like structurally similar lead scandium tantalate and barium strontium titanate, lead zirconate titanate can be used for manufacture of uncooled staring array infrared imaging sensors for thermographic cameras. Both thin film (usually obtained by chemical vapor deposition) and bulk structures are used. The formula of the material used usually approaches Pb
1.1
(Zr
0.3
Ti
0.7
)O
3
(called lead zirconate titanate 30/70). Its properties may be modified by doping it with lanthanum, resulting in lanthanum-doped lead zirconium titanate (lead zirconate titanate, also called lead lanthanum zirconium titanate), with formula Pb
0.83
La
0.17
(Zr
0.3
Ti
0.7
)
0.9575
O
3
(Lead zirconate titanate 17/30/70).[7]

另見

[编辑]

參考さんこう

[编辑]
  1. ^ What is "Lead zirconium titanate"?. americanpiezo.com. APC International. [April 29, 2021]. (原始げんし内容ないようそん于2018-08-27). 
  2. ^ Bell, Andrew J.; Deubzer, Otmar. Lead-free piezoelectrics—The environmental and regulatory issues. MRS Bulletin. August 2018, 43 (8): 581–587 [2022-08-28]. ISSN 0883-7694. doi:10.1557/mrs.2018.154. (原始げんし内容ないようそん于2022-08-15) えい语). 
  3. ^ Rouquette, J.; Haines, J.; Bornand, V.; Pintard, M.; Papet, Ph; Bousquet, C.; Konczewicz, L.; Gorelli, F. A.; Hull, S. Pressure tuning of the morphotropic phase boundary in piezoelectric lead zirconate titanate. Physical Review B. 2004, 70 (1): 014108. doi:10.1103/PhysRevB.70.014108. 
  4. ^ Moazzami, Reza; Hu, Chenming; Shepherd, William H. Electrical Characteristics of Ferroelectric Lead zirconate titanate Thin Films for DRAM Applications (PDF). IEEE Transactions on Electron Devices. September 1992, 39 (9): 2044 [2022-08-28]. doi:10.1109/16.155876. (原始げんし内容ないようそん (PDF)于2015-09-24). 
  5. ^ Andersen, B.; Ringgaard, E.; Bove, T.; Albareda, A.; Pérez, R. Performance of Piezoelectric Ceramic Multilayer Components Based on Hard and Soft Lead zirconate titanate. Proceedings of Actuator 2000. 2000: 419–422. 
  6. ^ Cutchen, J. Thomas; Harris, Jr., James O.; Laguna, George R. PLZT electrooptic shutters: applications. Applied Optics. 1975, 14 (8): 1866–1873 [2022-08-28]. PMID 20154933. doi:10.1364/AO.14.001866. (原始げんし内容ないようそん于2015-02-11). 
  7. ^ Liu, W.; Jiang, B.; Zhu, W. Self-biased dielectric bolometer from epitaxially grown Pb(Zr,Ti)O3 and lanthanum-doped Pb(Zr,Ti)O3 multilayered thin films. Applied Physics Letters. 2000, 77 (7): 1047–1049. doi:10.1063/1.1289064. 

外部がいぶ鏈接

[编辑]