(Translated by https://www.hiragana.jp/)
Isotopes of niobium - Wikipedia Jump to content

Isotopes of niobium

From Wikipedia, the free encyclopedia
Isotopes of niobium (41Nb)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
91Nb synth 680 y εいぷしろん 91Zr
92Nb trace 3.47×107 y βべーた+ 92Zr
93Nb 100% stable
93mNb synth 16.12 y IT 93Nb
94Nb trace 2.04×104 y βべーた 94Mo
95Nb synth 34.991 d βべーた 95Mo
Standard atomic weight Ar°(Nb)

Naturally occurring niobium (41Nb) is composed of one stable isotope (93Nb). The most stable radioisotope is 92Nb with a half-life of 34.7 million years. The next longest-lived niobium isotopes are 94Nb (half-life: 20,300 years) and 91Nb with a half-life of 680 years. There is also a meta state of 93Nb at 31 keV whose half-life is 16.13 years. Twenty-seven other radioisotopes have been characterized. Most of these have half-lives that are less than two hours, except 95Nb (35 days), 96Nb (23.4 hours) and 90Nb (14.6 hours). The primary decay mode before stable 93Nb is electron capture and the primary mode after is beta emission with some neutron emission occurring in 104–110Nb.

Only 95Nb (35 days) and 97Nb (72 minutes) and heavier isotopes (half-lives in seconds) are fission products in significant quantity, as the other isotopes are shadowed by stable or very long-lived (93Zr) isotopes of the preceding element zirconium from production via beta decay of neutron-rich fission fragments. 95Nb is the decay product of 95Zr (64 days), so disappearance of 95Nb in used nuclear fuel is slower than would be expected from its own 35-day half-life alone. Small amounts of other isotopes may be produced as direct fission products.

List of isotopes

[edit]
Nuclide
[n 1]
Z N Isotopic mass (Da)
[n 2][n 3]
Half-life
[n 4]
Decay
mode

[n 5]
Daughter
isotope

[n 6][n 7]
Spin and
parity
[n 8][n 4]
Isotopic
abundance
Excitation energy[n 4]
81Nb 41 40 80.94903(161)# <44 ns βべーた+, p 80Y 3/2−#
p 80Zr
βべーた+ 81Zr
82Nb 41 41 81.94313(32)# 51(5) ms βべーた+ 82Zr 0+
83Nb 41 42 82.93671(34) 4.1(3) s βべーた+ 83Zr (5/2+)
84Nb 41 43 83.93357(32)# 9.8(9) s βべーた+ (>99.9%) 84Zr 3+
βべーた+, p (<.1%) 83Y
84mNb 338(10) keV 103(19) ns (5−)
85Nb 41 44 84.92791(24) 20.9(7) s βべーた+ 85Zr (9/2+)
85mNb 759.0(10) keV 12(5) s (1/2−)
86Nb 41 45 85.92504(9) 88(1) s βべーた+ 86Zr (6+)
86mNb 250(160)# keV 56(8) s βべーた+ 86Zr high
87Nb 41 46 86.92036(7) 3.75(9) min βべーた+ 87Zr (1/2−)
87mNb 3.84(14) keV 2.6(1) min βべーた+ 87Zr (9/2+)#
88Nb 41 47 87.91833(11) 14.55(6) min βべーた+ 88Zr (8+)
88mNb 40(140) keV 7.8(1) min βべーた+ 88Zr (4−)
89Nb 41 48 88.913418(29) 2.03(7) h βべーた+ 89Zr (9/2+)
89mNb 0(30)# keV 1.10(3) h βべーた+ 89Zr (1/2)−
90Nb 41 49 89.911265(5) 14.60(5) h βべーた+ 90Zr 8+
90m1Nb 122.370(22) keV 63(2) μみゅーs 6+
90m2Nb 124.67(25) keV 18.81(6) s IT 90Nb 4-
90m3Nb 171.10(10) keV <1 μみゅーs 7+
90m4Nb 382.01(25) keV 6.19(8) ms 1+
90m5Nb 1880.21(20) keV 472(13) ns (11−)
91Nb 41 50 90.906996(4) 680(130) a EC (99.98%) 91Zr 9/2+
βべーた+ (.013%)
91m1Nb 104.60(5) keV 60.86(22) d IT (93%) 91Nb 1/2−
EC (7%) 91Zr
βべーた+ (.0028%)
91m2Nb 2034.35(19) keV 3.76(12) μみゅーs (17/2−)
92Nb 41 51 91.907194(3) 3.47(24)×107 a βべーた+ (99.95%) 92Zr (7)+ Trace
βべーた (.05%) 92Mo
92m1Nb 135.5(4) keV 10.15(2) d βべーた+ 92Zr (2)+
92m2Nb 225.7(4) keV 5.9(2) μみゅーs (2)−
92m3Nb 2203.3(4) keV 167(4) ns (11−)
93Nb 41 52 92.9063781(26) Stable 9/2+ 1.0000
93mNb 30.77(2) keV 16.13(14) a IT 93Nb 1/2−
94Nb 41 53 93.9072839(26) 2.03(16)×104 a βべーた 94Mo (6)+ Trace
94mNb 40.902(12) keV 6.263(4) min IT (99.5%) 94Nb 3+
βべーた (.5%) 94Mo
95Nb 41 54 94.9068358(21) 34.991(6) d βべーた 95Mo 9/2+
95mNb 235.690(20) keV 3.61(3) d IT (94.4%) 95Nb 1/2−
βべーた (5.6%) 95Mo
96Nb 41 55 95.908101(4) 23.35(5) h βべーた 96Mo 6+
97Nb 41 56 96.9080986(27) 72.1(7) min βべーた 97Mo 9/2+
97mNb 743.35(3) keV 52.7(18) s IT 97Nb 1/2−
98Nb 41 57 97.910328(6) 2.86(6) s βべーた 98Mo 1+
98mNb 84(4) keV 51.3(4) min βべーた (99.9%) 98Mo (5+)
IT (.1%) 98Nb
99Nb 41 58 98.911618(14) 15.0(2) s βべーた 99Mo 9/2+
99mNb 365.29(14) keV 2.6(2) min βべーた (96.2%) 99Mo 1/2−
IT (3.8%) 99Nb
100Nb 41 59 99.914182(28) 1.5(2) s βべーた 100Mo 1+
100mNb 470(40) keV 2.99(11) s βべーた 100Mo (4+, 5+)
101Nb 41 60 100.915252(20) 7.1(3) s βべーた 101Mo (5/2#)+
102Nb 41 61 101.91804(4) 1.3(2) s βべーた 102Mo 1+
102mNb 130(50) keV 4.3(4) s βべーた 102Mo high
103Nb 41 62 102.91914(7) 1.5(2) s βべーた 103Mo (5/2+)
104Nb 41 63 103.92246(11) 4.9(3) s βべーた (99.94%) 104Mo (1+)
βべーた, n (.06%) 103Mo
104mNb 220(120) keV 940(40) ms βべーた (99.95%) 104Mo high
βべーた, n (.05%) 103Mo
105Nb 41 64 104.92394(11) 2.95(6) s βべーた (98.3%) 105Mo (5/2+)#
βべーた, n (1.7%) 104Mo
106Nb 41 65 105.92797(21)# 920(40) ms βべーた (95.5%) 106Mo 2+#
βべーた, n (4.5%) 105Mo
107Nb 41 66 106.93031(43)# 300(9) ms βべーた (94%) 107Mo 5/2+#
βべーた, n (6%) 106Mo
108Nb 41 67 107.93484(32)# 0.193(17) s βべーた (93.8%) 108Mo (2+)
βべーた, n (6.2%) 107Mo
109Nb 41 68 108.93763(54)# 190(30) ms βべーた (69%) 109Mo 5/2+#
βべーた, n (31%) 108Mo
110Nb 41 69 109.94244(54)# 170(20) ms βべーた (60%) 110Mo 2+#
βべーた, n (40%) 109Mo
111Nb 41 70 110.94565(54)# 80# ms [>300 ns] 5/2+#
112Nb 41 71 111.95083(75)# 60# ms [>300 ns] 2+#
113Nb 41 72 112.95470(86)# 30# ms [>300 ns] 5/2+#
114Nb[4] 41 73
115Nb[4] 41 74
116Nb[5] 41 75
117Nb[6] 41 76
This table header & footer:
  1. ^ mNb – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σしぐま) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^ Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  6. ^ Bold italics symbol as daughter – Daughter product is nearly stable.
  7. ^ Bold symbol as daughter – Daughter product is stable.
  8. ^ ( ) spin value – Indicates spin with weak assignment arguments.

Niobium-92

[edit]

Niobium-92 is an extinct radionuclide[7] with a half-life of 34.7 million years, decaying predominantly via βべーた+ decay. Its abundance relative to the stable 93Nb in the early Solar System, estimated at 1.7×10−5, has been measured to investigate the origin of p-nuclei.[7][8] A higher initial abundance of 92Nb has been estimated for material in the outer protosolar disk (sampled from the meteorite NWA 6704), suggesting that this nuclide was predominantly formed via the gamma process (photodisintegration) in a nearby core-collapse supernova.[9]

Niobium-92, along with niobium-94, has been detected in refined samples of terrestrial niobium and may originate from bombardment by cosmic ray muons in Earth's crust.[10]

References

[edit]
  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ "Standard Atomic Weights: Niobium". CIAAW. 2017.
  3. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. ^ a b Ohnishi, Tetsuya; Kubo, Toshiyuki; Kusaka, Kensuke; et al. (2010). "Identification of 45 New Neutron-Rich Isotopes Produced by In-Flight Fission of a 238U Beam at 345 MeV/nucleon". J. Phys. Soc. Jpn. 79 (7). Physical Society of Japan: 073201. arXiv:1006.0305. Bibcode:2010JPSJ...79g3201T. doi:10.1143/JPSJ.79.073201.
  5. ^ Shimizu, Yohei; et al. (2018). "Observation of New Neutron-rich Isotopes among Fission Fragments from In-flight Fission of 345MeV=nucleon 238U: Search for New Isotopes Conducted Concurrently with Decay Measurement Campaigns". Journal of the Physical Society of Japan. 87 (1): 014203. Bibcode:2018JPSJ...87a4203S. doi:10.7566/JPSJ.87.014203.
  6. ^ Sumikama, T.; et al. (2021). "Observation of new neutron-rich isotopes in the vicinity of Zr110". Physical Review C. 103 (1): 014614. Bibcode:2021PhRvC.103a4614S. doi:10.1103/PhysRevC.103.014614. hdl:10261/260248. S2CID 234019083.
  7. ^ a b Iizuka, Tsuyoshi; Lai, Yi-Jen; Akram, Waheed; Amelin, Yuri; Schönbächler, Maria (2016). "The initial abundance and distribution of 92Nb in the Solar System". Earth and Planetary Science Letters. 439: 172–181. arXiv:1602.00966. Bibcode:2016E&PSL.439..172I. doi:10.1016/j.epsl.2016.02.005. S2CID 119299654.
  8. ^ Hibiya, Y; Iizuka, T; Enomoto, H (2019). THE INITIAL ABUNDANCE OF NIOBIUM-92 IN THE OUTER SOLAR SYSTEM (PDF). Lunar and Planetary Science Conference (50th ed.). Retrieved 7 September 2019.
  9. ^ Hibiya, Y.; Iizuka, T.; Enomoto, H.; Hayakawa, T. (2023). "Evidence for enrichment of niobium-92 in the outer protosolar disk". Astrophysical Journal Letters. 942 (L15): L15. Bibcode:2023ApJ...942L..15H. doi:10.3847/2041-8213/acab5d. S2CID 255414098.
  10. ^ Clayton, Donald D.; Morgan, John A. (1977). "Muon production of 92,94Nb in the Earth's crust". Nature. 266 (5604): 712–713. doi:10.1038/266712a0. S2CID 4292459.