(Translated by https://www.hiragana.jp/)
Isotopes of palladium - Wikipedia Jump to content

Isotopes of palladium

From Wikipedia, the free encyclopedia

Isotopes of palladium (46Pd)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
100Pd synth 3.63 d εいぷしろん 100Rh
γがんま
102Pd 1.02% stable
103Pd synth 16.991 d εいぷしろん 103Rh
104Pd 11.1% stable
105Pd 22.3% stable
106Pd 27.3% stable
107Pd trace 6.5×106 y βべーた 107Ag
108Pd 26.5% stable
110Pd 11.7% stable
Standard atomic weight Ar°(Pd)

Natural palladium (46Pd) is composed of six stable isotopes, 102Pd, 104Pd, 105Pd, 106Pd, 108Pd, and 110Pd, although 102Pd and 110Pd are theoretically unstable. The most stable radioisotopes are 107Pd with a half-life of 6.5 million years, 103Pd with a half-life of 17 days, and 100Pd with a half-life of 3.63 days. Twenty-three other radioisotopes have been characterized with atomic weights ranging from 90.949 u (91Pd) to 128.96 u (129Pd). Most of these have half-lives that are less than 30 minutes except 101Pd (half-life: 8.47 hours), 109Pd (half-life: 13.7 hours), and 112Pd (half-life: 21 hours).

The primary decay mode before the most abundant stable isotope, 106Pd, is electron capture and the primary mode after is beta decay. The primary decay product before 106Pd is rhodium and the primary product after is silver.

Radiogenic 107Ag is a decay product of 107Pd and was first discovered in the Santa Clara meteorite of 1978.[4] The discoverers suggest that the coalescence and differentiation of iron-cored small planets may have occurred 10 million years after a nucleosynthetic event. 107Pd versus Ag correlations observed in bodies, which have clearly been melted since accretion of the Solar System, must reflect the presence of short-lived nuclides in the early Solar System.[5]

List of isotopes

[edit]
Nuclide
[n 1]
Z N Isotopic mass (Da)[6]
[n 2][n 3]
Half-life[1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6]
Spin and
parity[1]
[n 7][n 4]
Natural abundance (mole fraction)
Excitation energy[n 4] Normal proportion[1] Range of variation
90Pd 46 44 89.95737(43)# 10# ms
[>400 ns]
βべーた+? 90Rh 0+
βべーた+, p? 89Ru
2p? 88Ru
91Pd 46 45 90.95044(45)# 32(3) ms βべーた+ (96.9%) 91Rh 7/2+#
βべーた+, p (3.1%) 90Ru
92Pd 46 46 91.94119(37) 1.06(3) s βべーた+ (98.4%) 92Rh 0+
βべーた+, p (1.6%) 91Ru
93Pd 46 47 92.93668(40) 1.17(2) s βべーた+ (92.6%) 93Rh (9/2+)
βべーた+, p (7.4%) 91Ru
94Pd 46 48 93.9290363(46) 9.1(3) s βべーた+ (>99.87%) 94Rh 0+
βべーた+, p (<0.13%) 93Ru
94m1Pd 4883.1(4) keV 515(1) ns IT 94Pd (14+)
94m2Pd 7209.8(8) keV 206(18) ns IT 94Pd (19−)
95Pd 46 49 94.9248885(33) 7.4(4) s βべーた+ (99.77%) 95Rh 9/2+#
βべーた+, p (0.23%) 95Rh
95mPd 1875.13(14) keV 13.3(2) s βべーた+ (88%) 95Rh (21/2+)
IT (11%) 95Pd
βべーた+, p (0.71%) 94Ru
96Pd 46 50 95.9182137(45) 122(2) s βべーた+ 96Rh 0+
96mPd 2530.57(23) keV 1.804(7) μみゅーs IT 96Pd 8+#
97Pd 46 51 96.9164720(52) 3.10(9) min βべーた+ 97Rh 5/2+#
98Pd 46 52 97.9126983(51) 17.7(4) min βべーた+ 98Rh 0+
99Pd 46 53 98.9117731(55) 21.4(2) min βべーた+ 99Rh (5/2)+
100Pd 46 54 99.908520(19) 3.63(9) d EC 100Rh 0+
101Pd 46 55 100.9082848(49) 8.47(6) h βべーた+ 101Rh 5/2+
102Pd 46 56 101.90563229(45) Observationally Stable[n 8] 0+ 0.0102(1)
103Pd 46 57 102.90611107(94) 16.991(19) d EC 103Rh 5/2+
104Pd 46 58 103.9040304(14) Stable 0+ 0.1114(8)
105Pd[n 9] 46 59 104.9050795(12) Stable 5/2+ 0.2233(8)
105mPd 489.1(3) keV 35.5(5) μみゅーs IT 105Pd 11/2−
106Pd[n 9] 46 60 105.9034803(12) Stable 0+ 0.2733(3)
107Pd[n 10] 46 61 106.9051281(13) 6.5(3)×106 y βべーた 107Ag 5/2+ trace[n 11]
107m1Pd 115.74(12) keV 0.85(10) μみゅーs IT 107Pd 1/2+
107m2Pd 214.6(3) keV 21.3(5) s IT 107Pd 11/2−
108Pd[n 9] 46 62 107.9038918(12) Stable 0+ 0.2646(9)
109Pd[n 9] 46 63 108.9059506(12) 13.59(12) h βべーた 109Ag 5/2+
109m1Pd 113.4000(14) keV 380(50) ns IT 109Pd 1/2+
109m2Pd 188.9903(10) keV 4.703(9) min IT 109Pd 11/2−
110Pd[n 9] 46 64 109.90517288(66) Observationally Stable[n 12] 0+ 0.1172(9)
111Pd 46 65 110.90769036(79) 23.56(9) min βべーた 111Ag 5/2+
111mPd 172.18(8) keV 5.563(13) h IT (76.8%) 111Pd 11/2−
βべーた (23.2%) 111Ag
112Pd 46 66 111.9073306(70) 21.04(17) h βべーた 112Ag 0+
113Pd 46 67 112.9102619(75) 93(5) s βべーた 113Ag (5/2+)
113mPd 81.1(3) keV 0.3(1) s IT 113Pd (9/2−)
114Pd 46 68 113.9103694(75) 2.42(6) min βべーた 114Ag 0+
115Pd 46 69 114.9136650(19)[7] 25(2) s βべーた 115Ag (1/2)+
115mPd 86.8(29) keV[7] 50(3) s βべーた (92.0%) 115Ag (7/2−)
IT (8.0%) 115Pd
116Pd 46 70 115.9142979(77) 11.8(4) s βべーた 116Ag 0+
117Pd 46 71 116.9179556(78) 4.3(3) s βべーた 117Ag (3/2+)
117mPd 203.3(3) keV 19.1(7) ms IT 117Pd (9/2−)
118Pd 46 72 117.9190673(27) 1.9(1) s βべーた 118Ag 0+
119Pd 46 73 118.9231238(45)[7] 0.88(2) s βべーた 119Ag 1/2+, 3/2+[8]
βべーた, n? 118Ag
119mPd[7] 199.1(30) keV 0.85(1) s IT 119Pd (11/2−)[8]
120Pd 46 74 119.9245517(25) 492(33) ms βべーた (>99.3%) 120Ag 0+
βべーた, n (<0.7%) 119Ag
121Pd 46 75 120.9289513(40)[7] 290(1) ms βべーた (>99.2%) 121Ag 3/2+#
βべーた, n (<0.8%) 120Ag
121m1Pd 135.5(5) keV 460(90) ns IT 121Pd 7/2+#
121m2Pd 160(14) keV 460(90) ns IT 121Pd 11/2−#
122Pd 46 76 121.930632(21) 193(5) ms βべーた 122Ag 0+
βべーた, n (<2.5%) 121Ag
123Pd 46 77 122.93513(85) 108(1) ms βべーた (90%) 123Ag 3/2+#
βべーた, n (10%) 122Ag
123mPd 100(50)# keV 100# ms βべーた 123Ag 11/2−#
IT? 123Pd
124Pd 46 78 123.93731(32)# 88(15) ms βべーた (83%) 124Ag 0+
βべーた, n (17%) 123Ag
124mPd 1000(800)# keV >20 μみゅーs IT 124Pd 11/2−#
125Pd 46 79 124.94207(43)# 60(6) ms βべーた (88%) 125Ag 3/2+#
βべーた, n (12%) 124Ag
125m1Pd 100(50)# keV 50# ms βべーた 125Ag 11/2−#
IT? 125Pd
125m2Pd 1805.23(18) keV 144(4) ns IT 125Pd (23/2+)
126Pd 46 80 125.94440(43)# 48.6(8) ms βべーた (78%) 126Ag 0+
βべーた, n (22%) 125Ag
126m1Pd 2023.5(7) keV 330(40) ns IT 126Pd (5−)
126m2Pd 2109.7(9) keV 440(30) ns IT 126Pd (7−)
126m3Pd 2406.0(10) keV 23.0(8) ms βべーた (72%) 126Ag (10+)
IT (28%) 126Pd
127Pd 46 81 126.94931(54)# 38(2) ms βべーた (>81%) 127Ag 11/2−#
βべーた, n (<19%) 126Ag
βべーた, 2n? 125Ag
127mPd 1717.91(23) keV 39(6) μみゅーs IT 127Pd (19/2+)
128Pd 46 82 127.95235(54)# 35(3) ms βべーた 128Ag 0+
βべーた, n? 127Ag
128mPd 2151.0(10) keV 5.8(8) μみゅーs IT 128Pd (8+)
129Pd 46 83 128.95933(64)# 31(7) ms βべーた 129Ag 7/2−#
βべーた, n? 128Ag
βべーた, 2n? 127Ag
130Pd 46 84 129.96486(32)# 27# ms
[>550 ns]
βべーた 130Ag 0+
βべーた, n? 129Ag
βべーた, 2n? 128Ag
131Pd 46 85 130.97237(32)# 20# ms
[>550 ns]
βべーた 131Ag 7/2−#
βべーた, n? 130Ag
βべーた, 2n? 129Ag
This table header & footer:
  1. ^ mPd – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σしぐま) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^ Modes of decay:
    EC: Electron capture
    IT: Isomeric transition


    p: Proton emission
  6. ^ Bold symbol as daughter – Daughter product is stable.
  7. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  8. ^ Believed to decay by βべーた+βべーた+ to 102Ru with a half-life over 7.6×1018 y
  9. ^ a b c d e Fission product
  10. ^ Long-lived fission product
  11. ^ Cosmogenic nuclide, also found as nuclear contamination
  12. ^ Believed to decay by βべーたβべーた to 110Cd with a half-life over 2.9×1020 years

Palladium-103

[edit]

Palladium-103 is a radioisotope of the element palladium that has uses in radiation therapy for prostate cancer and uveal melanoma. Palladium-103 may be created from palladium-102 or from rhodium-103 using a cyclotron. Palladium-103 has a half-life of 16.99[9] days and decays by electron capture to rhodium-103, emitting characteristic x-rays with 21 keV of energy.

Palladium-107

[edit]
Nuclide t12 Yield Q[a 1] βべーたγがんま
(Ma) (%)[a 2] (keV)
99Tc 0.211 6.1385 294 βべーた
126Sn 0.230 0.1084 4050[a 3] βべーたγがんま
79Se 0.327 0.0447 151 βべーた
135Cs 1.33 6.9110[a 4] 269 βべーた
93Zr 1.53 5.4575 91 βべーたγがんま
107Pd 6.5   1.2499 33 βべーた
129I 16.14   0.8410 194 βべーたγがんま
  1. ^ Decay energy is split among βべーた, neutrino, and γがんま if any.
  2. ^ Per 65 thermal neutron fissions of 235U and 35 of 239Pu.
  3. ^ Has decay energy 380 keV, but its decay product 126Sb has decay energy 3.67 MeV.
  4. ^ Lower in thermal reactors because 135Xe, its predecessor, readily absorbs neutrons.

Palladium-107 is the second-longest lived (half-life of 6.5 million years[9]) and least radioactive (decay energy only 33 keV, specific activity 5×10−5 Ci/g) of the 7 long-lived fission products. It undergoes pure beta decay (without gamma radiation) to 107Ag, which is stable.

Its yield from thermal neutron fission of uranium-235 is 0.14% per fission,[10] only 1/4 that of iodine-129, and only 1/40 those of 99Tc, 93Zr, and 135Cs. Yield from 233U is slightly lower, but yield from 239Pu is much higher, 3.2%.[10] Fast fission or fission of some heavier actinides[which?] will produce palladium-107 at higher yields.

One source[11] estimates that palladium produced from fission contains the isotopes 104Pd (16.9%),105Pd (29.3%), 106Pd (21.3%), 107Pd (17%), 108Pd (11.7%) and 110Pd (3.8%). According to another source, the proportion of 107Pd is 9.2% for palladium from thermal neutron fission of 235U, 11.8% for 233U, and 20.4% for 239Pu (and the 239Pu yield of palladium is about 10 times that of 235U).

Because of this dilution and because 105Pd has 11 times the neutron absorption cross section, 107Pd is not amenable to disposal by nuclear transmutation. However, as a noble metal, palladium is not as mobile in the environment as iodine or technetium.

References

[edit]
  1. ^ a b c d e Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ "Standard Atomic Weights: Palladium". CIAAW. 1979.
  3. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. ^ W. R. Kelly; G. J. Wasserburg (1978). "Evidence for the existence of 107Pd in the early solar system". Geophysical Research Letters. 5 (12): 1079–1082. Bibcode:1978GeoRL...5.1079K. doi:10.1029/GL005i012p01079.
  5. ^ J. H. Chen; G. J. Wasserburg (1990). "The isotopic composition of Ag in meteorites and the presence of 107Pd in protoplanets". Geochimica et Cosmochimica Acta. 54 (6): 1729–1743. Bibcode:1990GeCoA..54.1729C. doi:10.1016/0016-7037(90)90404-9.
  6. ^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  7. ^ a b c d e Jaries, A.; Stryjczyk, M.; Kankainen, A.; Ayoubi, L. Al; Beliuskina, O.; Canete, L.; de Groote, R. P.; Delafosse, C.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Geldhof, S.; Gins, W.; Hukkanen, M.; Imgram, P.; Kahl, D.; Kostensalo, J.; Kujanpää, S.; Kumar, D.; Moore, I. D.; Mougeot, M.; Nesterenko, D. A.; Nikas, S.; Patel, D.; Penttilä, H.; Pitman-Weymouth, D.; Pohjalainen, I.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Ruotsalainen, J.; Srivastava, P. C.; Suhonen, J.; Vilen, M.; Virtanen, V.; Zadvornaya, A. "Physical Review C - Accepted Paper: Isomeric states of fission fragments explored via Penning trap mass spectrometry at IGISOL". journals.aps.org. arXiv:2403.04710.
  8. ^ a b Kurpeta, J.; Abramuk, A.; Rząca-Urban, T.; Urban, W.; Canete, L.; Eronen, T.; Geldhof, S.; Gierlik, M.; Greene, J. P.; Jokinen, A.; Kankainen, A.; Moore, I. D.; Nesterenko, D. A.; Penttilä, H.; Pohjalainen, I.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Simpson, G. S.; Smith, A. G.; Vilén, M. (14 March 2022). "βべーた - and γがんま -spectroscopy study of Pd 119 and Ag 119". Physical Review C. 105 (3). doi:10.1103/PhysRevC.105.034316.
  9. ^ a b Winter, Mark. "Isotopes of palladium". WebElements. The University of Sheffield and WebElements Ltd, UK. Retrieved 4 March 2013.
  10. ^ a b Weller, A.; Ramaker, T.; Stäger, F.; Blenke, T.; Raiwa, M.; Chyzhevskyi, I.; Kirieiev, S.; Dubchak, S.; Steinhauser, G. (2021). "Detection of the Fission Product Palladium-107 in a Pond Sediment Sample from Chernobyl". Environmental Science & Technology Letters. 8 (8): 656–661. Bibcode:2021EnSTL...8..656W. doi:10.1021/acs.estlett.1c00420.
  11. ^ R. P. Bush (1991). "Recovery of Platinum Group Metals from High Level Radioactive Waste" (PDF). Platinum Metals Review. 35 (4): 202–208. doi:10.1595/003214091X354202208. Archived from the original (PDF) on 2015-09-24. Retrieved 2011-04-02.