(Translated by https://www.hiragana.jp/)
Vector - Wikipedia, la enciclopedia libre

Vector

objeto geométrico que tiene magnitud y dirección
(Redirigido desde «Vectorial»)

En matemática, un vector fijo es un segmento de recta orientado en el espacio euclídeo. La longitud de dicho segmento se denomina módulo del vector, que es siempre un número no negativo. La recta que lo contiene se denomina recta soporte. Cualquiera de las rectas paralelas a esta, o bien sus semirrectas que apuntan en el mismo sentido dado por la orientación del vector, determinan la dirección del vector.[a]​ Para muchas aplicaciones el punto inicial es irrelevante, por lo que no se hace distinción entre dos vectores que tienen el mismo módulo y dirección; se consideran equivalentes aunque su punto inicial sea diferente.[1]​ La clase de equivalencia de todos los vectores fijos de igual módulo y dirección se denomina vector libre o simplemente vector[2][b]​.

Representación gráfica de un vector como un segmento orientado sobre una recta.

En física los vectores se emplean para describir las magnitudes vectoriales, a diferencia de las magnitudes escalares, que se pueden expresar simplemente con un número. Por ejemplo, para determinar la velocidad de un objeto en movimiento, como un automóvil, no basta con una cantidad en kilómetros o millas por hora (lo que marca el velocímetro, que sería el módulo de la velocidad) sino que es necesario describir también la dirección en la que se produce dicho movimiento. Otros ejemplos de magnitudes vectoriales son la fuerza, el desplazamiento o el campo eléctrico.

Ejemplo de las componentes de un vector en 3 dimensiones. El punto final del vector se obtiene al desplazarse « veces» por , « veces» por y « veces» por .

Un vector fijo queda completamente determinado por un punto inicial y un punto final ; o alternativamente por el punto inicial, el módulo y la dirección. Dado un sistema de coordenadas del espacio -dimensional (un punto origen y una base de vectores), el vector correspondiente (módulo y dirección) queda unívocamente determinado mediante números, llamados componentes del vector. Estos se obtienen al restar, una por una, cada coordenada del punto final menos la correspondiente del punto inicial (). El conjunto de todos los posibles vectores en el espacio -dimensional se denota como , y se compone de todas las -tuplas de números reales.[3]​ Estos vectores reales se generalizan de forma natural a los vectores complejos, que son -tuplas de números complejos (y cuyo conjunto se denota ).[4]

Dos vectores se pueden sumar, sumando las componentes correspondientes, para obtener un tercero. El vector resultante es el obtenido al concatenar uno a continuación del otro. Un vector también se puede multiplicar por un escalar (un número ), multiplicando cada componente por dicho número. El vector que se obtiene de esta operación tiene la misma dirección, pero su módulo resulta multiplicado por , es decir, se escala por un factor . Juntando ambas operaciones se obtienen combinaciones lineales de vectores.[5]

En álgebra abstracta se define el concepto más general de espacio vectorial sobre un cuerpo : un conjunto dotado de dos operaciones que se comportan como la suma de vectores y el producto por escalares (elementos de ) de los vectores geométricos. En este contexto, un vector se define como un elemento de un espacio vectorial. Los espacios euclídeos de dimensión finita, como el plano o el espacio tridimensional , son casos particulares de este tipo de estructura matemática en lo que se refiere al álgebra (sus dos operaciones).[6]​ No obstante, la generalización de otras características geométricas de los vectores, como el módulo o el ángulo entre vectores requieren de otras estructuras adicionales (norma, producto escalar...) que no todos los espacios vectoriales poseen.[7]

Conceptos fundamentales en vectores euclídeos

editar

Esta sección explica los aspectos básicos, la necesidad de los vectores para representar ciertas magnitudes físicas, los componentes de un vector euclídeo o geométrico, así como la notación de los mismos, etc. En otra sección más adelante se tratan otro tipo de vectores más generales.

Definición

editar
 
Elementos de un vector.

Un vector es un elemento de un espacio vectorial. En la práctica, cuando se tratan con vectores usualmente se expresan a una base vectorial. Así fijada un espacio vectorial específico y una base dentro del mismo:

Un vector (real) de dimensión   viene representado por una tupla de números reales (que se llaman componentes del vector). El conjunto de todos los vectores de dimensión   se representa como   (formado mediante el producto cartesiano). Así, un vector   perteneciente a un espacio   se representa como:

 , donde  

Un vector también se puede ver desde el punto de vista de la geometría como vector geométrico (usando frecuentemente el espacio tridimensional   o bidimensional  ).

Un vector fijo del plano euclidiano es un segmento orientado, en el que hay que distinguir tres características:[8][9][10]

  • Módulo: la longitud del segmento expresado en términos de un valor numérico y una unidad.
  • Dirección: el ángulo u orientación angular del vector con respecto al eje x. Una dirección puede ser recorrida en dos sentidos opuestos (por ej. puede tener una orientación norte-sur, este-oeste, vertical, horizontal, paralela, etc.).
  • Sentido: es cada una de las dos orientaciones opuestas de una misma dirección, indicando el origen y extremo (representado en general con la punta de una flecha en un vector) de ésta. Puede ser positivo o negativo.

En inglés, la palabra direction indica tanto la dirección como el sentido del vector, con lo que se define el vector con solo dos características: módulo y dirección.[11]

Los vectores fijos del plano se denotan con dos letras mayúsculas (y una flecha hacia la derecha encima), por ejemplo  , que indican su origen y extremo respectivamente. Es decir, el punto A es el origen o punto de aplicación y el punto B es el extremo del vector  , cuyas coordenadas son:

 

Características de un vector

editar
 
Coordenadas cartesianas.

Un vector se puede definir por sus coordenadas, si el vector está en el plano xy, se representa:

 

siendo sus coordenadas:

 

Si consideramos el triángulo formado por los componentes   (como catetos) y   (como hipotenusa): se puede calcular   multiplicando   por el   (siendo el ángulo formado por   y  ) o multiplicando   por el   (siendo   el ángulo formado por   y  ). De igual forma se puede calcular   multiplicando   por el   o multiplicando   por el   (considerando las posiciones de   y   mencionadas anteriormente).

Siendo el vector la suma vectorial de sus coordenadas:

 
 
Coordenadas tridimensionales.

Si un vector es de tres dimensiones reales, representado sobre los ejes x, y, z, se puede representar:

 

siendo sus coordenadas:

 

Si representamos el vector gráficamente podemos diferenciar los siguientes elementos:

La recta soporte o dirección, sobre la que se traza el vector.

 

El módulo o amplitud con una longitud proporcional al valor del vector.

 

El sentido, indicado por la punta de flecha, siendo uno de los dos posibles sobre la recta soporte.

 

El punto de aplicación que corresponde al lugar geométrico al cual corresponde la característica vectorial representado por el vector.

 

El nombre o denominación es la letra, secuencia o signo de signos que define al vector.

 

Por lo tanto en un vector podemos diferenciar:

 
Nombre
Dirección
Sentido
Módulo
Punto de aplicación

Magnitudes vectoriales

editar
 
Representación gráfica de una magnitud vectorial, con indicación de su punto de aplicación y de los versores cartesianos.
 
Representación de los vectores.

Frente a aquellas magnitudes físicas, tales como la masa, la presión, el volumen, la energía, la temperatura, etc; que quedan completamente definidas por un número y las unidades utilizadas en su medida, aparecen otras, tales como el desplazamiento, la velocidad, la aceleración, la fuerza, el campo eléctrico, etc., que no quedan completamente definidas dando un dato numérico, sino que llevan asociadas una dirección. Estas últimas magnitudes son llamadas vectoriales en contraposición a las primeras llamadas escalares.

Las magnitudes vectoriales quedan representadas por un ente matemático que recibe el nombre de vector. En un espacio euclidiano, de no más de tres dimensiones, un vector se representa por un segmento orientado. Así, un vector queda caracterizado por los siguientes elementos: su longitud o módulo, siempre positivo por definición, y su dirección, la cual puede ser representada mediante la suma de sus componentes vectoriales ortogonales, paralelas a los ejes de coordenadas; o mediante coordenadas polares, que determinan el ángulo que forma el vector con los ejes positivos de coordenadas.[12][13]

Se representa como un segmento orientado, con una dirección, dibujado de forma similar a una "flecha". Su longitud representa el módulo del vector, la recta indica la dirección, y la "punta de flecha" indica su sentido.[8][9][10]

Notación

editar

Las magnitudes vectoriales se representan en los textos impresos por letras en negrita, para diferenciarlas de las magnitudes escalares que se representan en cursiva. En los textos manuscritos, las magnitudes vectoriales se representan colocando una flecha sobre la letra que designa su módulo (el cual es un escalar).

Ejemplos
  •   … representan, respectivamente, las magnitudes vectoriales de módulos A, a, ωおめが, … El módulo de una magnitud vectorial también se representa encerrando entre barras la notación correspondiente al vector:  
  • En los textos manuscritos se escribe:  … para los vectores y  … o  … para los módulos.

Cuando convenga, se representan la magnitud vectorial haciendo referencia al origen y al extremo del segmento orientado que la representa geométricamente; así, se designan los vectores representados en la Figura 2 en la forma  , … resultando muy útil esta notación para los vectores que representan el desplazamiento.

Además de estas convenciones los vectores unitarios o versores, cuyo módulo es la unidad, se representan frecuentemente con un circunflejo encima, por ejemplo  .

Clasificación de vectores

editar

Según los criterios que se utilicen para determinar la igualdad o equipolencia de dos vectores, pueden distinguirse:

  • Vectores libres: no están aplicados en determinado punto.
  • Vectores deslizantes: su punto de aplicación puede deslizar a lo largo de su recta de acción.
  • Vectores fijos o ligados: están aplicados en un determinado punto.

Podemos referirnos también a:

  • Vectores unitarios: vectores de módulo uno.
  • Vectores concurrentes o angulares: vectores cuyas direcciones o líneas de acción pasan por un mismo punto. También se les suele llamar angulares porque forman un ángulo entre ellas.
  • Vectores opuestos: vectores de igual magnitud y dirección, pero sentidos contrarios.[8]​ En inglés se dice que son de igual magnitud pero direcciones contrarias, ya que la dirección también indica el sentido.
  • Vectores colineales: vectores que comparten una misma recta de acción.
  • Vectores paralelos: vectores cuyas líneas de acción son paralelas.
  • Vectores coplanarios: vectores cuyas rectas de acción son coplanarias (situadas en un mismo plano).
  • Vectores Perpendiculares: son dos vectores que forman un ángulo de 90 grados y su producto escalar es cero.

Componentes de un vector

editar
 
Componentes del vector.

Un vector en el espacio euclidiano tridimensional se puede expresar como una combinación lineal de tres vectores unitarios o versores, que son perpendiculares entre sí y constituyen una base vectorial.

En coordenadas cartesianas, los vectores unitarios se representan por  ,  ,  , ( o u, v, w) paralelos a los ejes  ,  ,   correspondientes. Los componentes del vector en una base predeterminada pueden escribirse entre paréntesis y separadas con comas:

 

o expresarse como una combinación de los vectores unitarios definidos en la base vectorial. Así, en un sistema de coordenadas cartesiano, será

 

Estas representaciones son equivalentes entre sí, y los valores  ,  ,  , son los componentes de un vector que, salvo que se indique lo contrario, son números reales.

Una representación conveniente de las magnitudes vectoriales es mediante un vector columna o un vector fila, particularmente cuando están implicadas operaciones matrices (tales como el cambio de base), del modo siguiente:

 

Por ejemplo, los vectores unitarios se expresarían de la siguiente manera:

 

El lema de Zorn, consecuencia del axioma de elección, permite establecer que todo espacio vectorial admite una base vectorial, por lo que todo vector es representable como el producto de unos componentes respecto a dicha base. Dado un vector, solamente existen un número finito de componentes diferentes de cero.

Producto por un escalar

editar

La definición producto por un escalar   produce otro vector; es como modificar el extremo final del vector u, siempre visualmente.

Por un lado, la representación del producto en el caso de que el cuerpo de los escalares sea   modifica, visualmente, la longitud de la imagen del vector, quedando ambos siempre superpuestos; por otro lado, las representaciones en el caso de que   además de modificar la longitud, también agrega rotaciones, para facilitarlas visualmente considérense centradas en el origen del vector, siendo estas modificaciones un poco más expresivas, visualmente, pero no más fáciles que en el caso real:

 
a)Decir que a(bu)=(ab)u, es exigir que los productos encadenados a(b(u)) pueden simplificarse como uno, c=ab, luego (ab)u queda como cu.
 
b) Decir que existe el escalar 1 tal que 1u=u, equivale a decir exista un escalar incapaz de efectuar, mediante producto, modificación alguna a todos los vectores.
 
c) Decir que a(u+v)=au+av, es exigir la propiedad distributiva respecto la suma vectorial.
 
d) Decir que (a+b)u=au+bu, es exigir la propiedad distributiva respecto la suma escalar.
 

Para el caso real se han de eliminar las rotaciones de los ejemplos anteriores.

Operaciones con vectores

editar

Con los vectores, siempre que pertenezcan a un mismo espacio, se pueden realizar diversas operaciones. La más sencilla es la suma, en la que se toman dos vectores para obtener un tercero. La otra operación fundamental es el «producto por un escalar» en el que se multiplica un vector por un factor de escala para obtener otro vector. Otras operaciones posibles son el producto escalar, el producto vectorial y el Producto mixto, aunque las dos últimas no están definidas en todas las dimensiones.

En general, las operaciones se definen sobre los vectores (libres). Existen reglas para obtener gráficamente los resultados de estas operaciones. Para ello, primeramente se deben elegir representantes (vectores fijos equivalentes a cada uno de los operandos), estableciendo un punto inicial para cada uno de ellos. Cuando el resultado sea un vector, este será el vector libre asociado al vector fijo así obtenido. También hay reglas algebráicas para operar con los vectores a partir de sus componentes respecto de cierta base, que tiene que ser la misma para todos los operandos y para el resultado.

Suma de vectores

editar

Construcción geométrica

editar
 
La suma de u y v es una de las diagonales del paralelogramo formado por estos (la que se obtiene al recorrer ambos según su orientación). El orden de los sumandos no altera el resultado.

La suma de dos vectores da como resultado un tercer vector. Para obtener éste, se escogen dos vectores fijos concatenados como representantes de los dos sumandos: tales que el extremo final del primero coincida con el extremo inicial del segundo. El vector suma se corresponde con el vector fijo que tiene por punto inicial el inicial del primer vector y por punto final el final del segundo. Si se invierte el orden de los sumandos, la suma no cambia, como se puede ver al completar el paralelogramo cuyos lados están dados por los vectores que se suman. Es decir, la suma de vectores satisface la propiedad conmutativa.[1]

 
La suma de tres vectores no cambia si en lugar de calcular (u+v)+w se calcula u+(v+w).

Se puede generalizar esta operación a la suma de un número   de vectores. Para obtener la suma total, se concatenan todos ellos uno a continuación del otro. El vector resultante es el que une el punto inicial del primero con el punto final del último. Las   sumas parciales que hay que realizar pueden hacerse en cualquier orden, dado que los puntos inicial y final no cambian, por lo que la suma de vectores también satisface la propiedad asociativa.

Expresión algebráica de la suma por componentes

editar

Conocidas las componentes de dos vectores, respecto de la misma base, por ejemplo

 

el vector suma de a y b es el que tiene componentes, respecto de la misma base

 

Es decir, la suma se obtiene sumando componente por componente. La suma vectorial es una generalización de la suma de números reales y como tal comparte muchas de sus propiedades: la propiedad conmutativa y la propiedad asociativa son inmediatas. También existe un elemento neutro para la suma de vectores: el vector nulo. Este vector nulo tiene todas sus componentes iguales a 0, y por tanto sumarlo a cualquier otro vector no tiene ningún efecto: para todo vector a se tiene que a+0 = a. Al igual que para la suma usual, todo vector tiene también su elemento opuesto: dado un vector a de componentes   existe un vector -a con componentes   y tal que a+(-a)=0.[14]​ Todas estas propiedades implican que los vectores de un mismo espacio forman un grupo respecto de la suma.

Suma de magnitudes vectoriales

editar

En física, la suma de dos vectores tiene sentido solo en ciertos contextos. Ambos vectores tienen que representar la misma magnitud vectorial. Por ejemplo, carece de sentido sumar fuerzas con velocidades. Además, la suma tiene que tener un sentido físico, como por ejemplo sumar las distintas fuerzas aplicadas sobre una masa puntual para obtener la resultante de fuerzas. Sustituir las fuerzas individuales por su vector suma, aplicado en la misma masa puntual, es un sistema físico equivalente.

En un sólido rígido (con extensión) distintas fuerzas pueden actuar en puntos distintos. Aún así se pueden sumar, desplazandolos, siempre y cuando se mantenga su recta de acción. Si existe un punto común entre las varias rectas, se pueden deslizar los vectores hasta dicho punto y sumarlos, siendo la recta de acción de la resultante la que pasa por dicho punto. Si no hay un punto común, el sistema equivalente estará formado por una fuerza (la suma de los vectores libres de las fuerzas individuales) y por un momento de fuerza. En este caso, se deberá optar por un punto de aplicación para la fuerza resultante: el sistema equivalente está formado por este vector suma aplicado en tal punto y un momento de fuerza, igual a la suma de los momentos de cada una de las fuerzas actuantes, calculados respecto del punto de aplicación elegido.

Producto de un vector por un escalar

editar
 
Producto por un escalar.

El producto de un vector por un escalar es otro vector cuyo módulo es el producto del escalar por el módulo del vector, cuya dirección es igual a la del vector, y cuyo sentido es contrario a este si el escalar es negativo.

Partiendo de la representación gráfica del vector, sobre la misma línea de su dirección tomamos tantas veces el módulo de vector como indica el escalar.

Sean   un escalar y   un vector, el producto de   por   se representa   y se realiza multiplicando cada una de los componentes del vector por el escalar; esto es,

 

Con la notación matricial sería

 


Combinaciones lineales

editar

Dados dos vectores libres,

 

 

El resultado de su suma o de su diferencia se expresa en la forma

 

y ordenando los componentes,

 


Con la notación matricial sería

 

Conocidos los módulos de dos vectores dados,   y  , así como el ángulo   que forman entre sí, el módulo de   es:

 

La deducción de esta expresión puede consultarse en deducción del módulo de la suma.

Producto escalar

editar

Producto vectorial

editar

Derivada ordinaria de un vector

editar

Dado un vector que es función de una variable independiente

 

Calculamos la derivada ordinaria del vector con respecto de la variable t, calculando la derivada de cada una de sus componentes como si de escalares se tratara:

 

teniendo en cuenta que los vectores unitarios son constantes en módulo y dirección.

Con notación matricial sería

 

 
 

Veamos un ejemplo de derivación de un vector, partiendo de una función vectorial:

 

Esta función representa una curva helicoidal alrededor del eje z, de radio unidad, como se ilustra en la figura. Podemos imaginar que esta curva es la trayectoria de una partícula y la función   representa el vector posición en función del tiempo t. Derivando tendremos:

 

Realizando la derivada:

 

La derivada del vector posición respecto al tiempo es la velocidad, así que esta segunda función determina el vector velocidad de la partícula en función del tiempo, podemos escribir:

 

Este vector velocidad es un vector tangente a la trayectoria en el punto ocupado por la partícula en cada instante. El sentido es hacia los valores crecientes de los valores escalares.[11]​ Si derivásemos de nuevo obtendríamos el vector aceleración.

Derivada covariante de un vector

editar

Cuando en lugar de emplear una "base fija" en todo el dominio de un vector se usan "bases móviles" como cuando se emplean coordenadas curvilíneas la variación total de un vector dependiente del tiempo depende no solo de la variación de componentes como en el caso de la derivada ordinaria sino también de la variación de la orientación de la base. La variación total se llama derivada covariante:

 

Cuando se emplea una base fija (coordenadas cartesianas) la derivada covariante coincide con la derivada ordinaria. Por ejemplo cuando se estudia el movimiento de una partícula desde un sistema de referencia no inercial en rotación, las aceleraciones de Coriolis y centrípeta se deben a los factores que contienen   y otros factores menos comunes.

Ángulo entre dos vectores

editar

El ángulo determinado por las direcciones de dos vectores   y   viene dado por:

 

Descomposiciones de un vector

editar

Dado un vector   y una dirección de referencia dada por un vector unitario   se puede descomponer el primer vector en un componente paralela y otro componente perpendicular a la dirección de referencia:

 

En física esta descomposición se usa en diferentes contextos como descomponer la aceleración en un componente paralela a la velocidad y otro componente perpendicular a la misma. También el tensión mecánica en un punto sobre un plano puede descomponerse en un componente normal al plano y otra paralela.

También dado un campo vectorial   definido sobre un dominio de Lipschitz, acotado, simplemente conexo y de cuadrado integrable   admite la llamada descomposición Helmholtz como suma de un campo conservativo y un campo solenoidal:

 

Cambio de base vectorial

editar
 
Cambio de base vectorial.

En matemáticas las rotaciones son transformaciones lineales que conservan las normas en espacios vectoriales en los que se ha definido una operación de producto interno. La matriz de transformación tiene la propiedad de ser una matriz unitaria, es decir, es ortogonal y su determinante es 1. Sea un vector   expresado en un sistema de coordenadas cartesianas (x, y, z) con una base vectorial   asociada definida por los versores  ; esto es,

 

Ahora, supongamos que giramos el sistema de ejes coordenados, manteniendo fijo el origen del mismo, de modo que obtengamos un nuevo triedro ortogonal de ejes (x′, y′, z′), con una base vectorial   asociada definida por los versores  . Los componentes del vector   en esta nueva base vectorial serán:

 

La operación de rotación de la base vectorial siempre puede expresarse como la acción de un operador lineal (representado por una matriz) actuando sobre el vector (multiplicando al vector):

 

que es la matriz de transformación para el cambio de base vectorial.

 
Cambio de base vectorial.
Ejemplo

En el caso simple en el que el giro tenga magnitud   alrededor del eje z, tendremos la transformación:

 

Al hacer la aplicación del operador, es decir, al multiplicar la matriz por el vector, obtendremos la expresión del vector   en la nueva base vectorial:

 

siendo

 
 
 

los componentes del vector en la nueva base vectorial.

Vectores en el caso general

editar

En matemáticas, se define la estructura de espacio vectorial y a cada uno de los elementos o puntos de ese espacio se les denomina vector. En muchos casos los vectores no pueden ser representados por módulo dirección y sentido. Por ejemplo, en un espacio vectorial complejo sobre los números complejos la noción de módulo no está automáticamente defindida. Igualmente en un espacio vectorial de dimensión infinita, como es el caso de espacios de Hilbert no existe una representación gráfica de los vectores como segmentos orientados.

Requerimientos físicos de las magnitudes vectoriales

editar

No cualquier n-tupla de funciones o números reales constituye un vector físico. Para que una n-tupla represente un vector físico, los valores numéricos de los componentes del mismo medidos por diferentes observadores deben transformarse de acuerdo con ciertas relaciones fijas.

En mecánica newtoniana generalmente se utilizan vectores genuinos, llamados a veces vectores polares, junto con pseudovectores, llamados vectores axiales que realmente representan el dual de Hodge de magnitudes tensoriales antisimétricas. El momento angular, el campo magnético y todas las magnitudes en cuya definición interviene el producto vectorial son en realidad pseudovectores o vectores axiales.

En teoría de la relatividad especial, solamente los vectores tetradimensionales cuyas medidas tomadas por diferentes observadores pueden ser relacionadas mediante alguna transformación de Lorentz constituyen magnitudes vectoriales. Así los componentes de dos magnitudes vectoriales medidas por dos observadores   y   deben relacionarse de acuerdo con la siguiente relación:

 


Donde   son los componentes de la matriz que da la transformación de Lorentz. Magnitudes como el momento angular, el campo eléctrico o el campo magnético de hecho en teoría de la relatividad no son magnitudes vectoriales sino tensoriales.

Véase también

editar
  1. En los textos en castellano, es habitual con dirección referirse a una recta (o una familia de rectas paralelas), y con sentido a una de las dos semirrectas (o familias de semirrectas paralelas).«2». Compendio de Física. Editorial San Marcos. 2018. ISBN 978-612-315-362-5. 
  2. También llamado vector euclidiano o vector geométrico para distinguirlo del concepto más genérico de espacio vectorial o de otras acepciones.[cita requerida]

Referencias

editar
  1. a b (Shafarevich y Remizov, 2013, p. 79-81)
  2. (Marsden y Tromba, 2003, pp. 7)
  3. (Strang, 2009, §3.1)
  4. (Strang, 2009, §10.1)
  5. (Marsden y Tromba, 2003, §1.1)
  6. (Meyer, 2000, §4.1)
  7. (MacCluer, 2009, p. 2)
  8. a b c Enrico Bompiani, Universidad Nacional del Litoral, ed., Geometría Analítica, pp. 14-15, ISBN 9789875084339 .
  9. a b Llopis, GÁlvez, Rubio, López (1998), Editorial Tebar, ed., Física: curso teórico-práctico de fundamentos físicos de la ingeniería, p. 26-27,36,70,71,82, ISBN 9788473601870, «(cito algunos ejemplos) [de página 26] [Otras magnitudes] llamadas vectoriales, donde no basta conocer su valor numerico, sino que además es necesario dar también su dirección y sentido. [página 70] […] el cual es un vector que en general tendrá distinta dirección y sentido que r(t). [página 71] […] Consecuencia de la definición es que la dirección de este vector derivada, dr/dt, es tangente a la curva indicatriz, su sentido es el de los valors crecientes del parámetro escalar t, y que su módulo es: […]» .
  10. a b Manuela Blanco Sánchez, Marcial Carreto Sánchez, José Ma González Clouté (1997), Ediciones de la Torre, ed., Programa de diversificación curricular: ámbito científico-tecnológico: 2o. ciclo de ESO, Proyecto Didáctico Quirón. Ciencias y tecnología 102 (ilustrada edición), pp. 200,202,216, ISBN 9788479601867 .
  11. a b Mitiguy, Paul, Chapter 2: Vectors and dyadics (en inglés), p. nota 1 en página 2, archivado desde el original el 20 de noviembre de 2012, consultado el 12 de febrero de 2012 .
  12. «Euclidean vector» (en inglés). PlanetMath.org. Archivado desde el original el 6 de marzo de 2016. Consultado el 3 de junio de 2010. 
  13. «Vector» (en inglés). Math Academy Online. Archivado desde el original el 28 de octubre de 2012. Consultado el 3 de junio de 2010. 
  14. (Marsden y Tromba, 2003, pp. 3-6)

Bibliografía

editar

Enlaces externos

editar