图子式
图子
定 义
[编辑]边收缩(contraction)
例 子
[编辑]H
主要 结论和 猜想
[编辑]对于
Hadwiger猜想
参 见
[编辑]注 释
[编辑]- ^ Lovász (2006), p. 77; Wagner (1937a).
- ^ Lovász (2006), theorem 4, p. 78; Robertson & Seymour (2004).
- ^ Robertson & Seymour (1995).
- ^ Fellows & Langston (1988).
- ^ Diestel (2005), Chapter 12: Minors, Trees, and WQO; Robertson & Seymour (2004).
- ^ Lovász (2006), p. 76.
- ^ Lovász (2006), pp. 80–82; Robertson & Seymour (2003).
- ^ Mader (1967).
- ^ Kostochka (1982); Kostochka (1984); Thomason (1984); Thomason (2001).
- ^ Alon, Seymour & Thomas (1990); Plotkin, Rao & Smith (1994); Reed & Wood (2009).
- ^ Grohe (2003)
- ^ Hadwiger (1943)
- ^ Robertson, Seymour & Thomas (1993).
- ^ Thomas (1999); Pegg (2002).
参考 文献
[编辑]- Alon, Noga; Seymour, Paul; Thomas, Robin, A separator theorem for nonplanar graphs, Journal of the American Mathematical Society, 1990, 3 (4): 801–808 [2019-04-25], JSTOR 1990903, MR 1065053, doi:10.2307/1990903, (
原始 内容 存 档于2019-02-14) (英 语). - Błasiok, Jarosław; Kamiński, Marcin; Raymond, Jean-Florent; Trunck, Théophile, Induced minors and well-quasi-ordering, Bibcode:2015arXiv151007135B, arXiv:1510.07135 (
英 语). - Bollobás, B.; Catlin, P. A.; Erdős, Paul, Hadwiger's conjecture is true for almost every graph (PDF), European Journal of Combinatorics, 1980, 1: 195–199 [2019-04-25], doi:10.1016/s0195-6698(80)80001-1, (
原始 内容 (PDF)存 档于2009-03-18) (英 语). - Buchheim, Christoph; Chimani, Markus; Gutwenger, Carsten; Jünger, Michael; Mutzel, Petra, Crossings and planarization, Tamassia, Roberto (编), Handbook of Graph Drawing and Visualization, Discrete Mathematics and its Applications (Boca Raton), CRC Press, Boca Raton, FL, 2014 (
英 语). - Demaine, Erik D.; Hajiaghayi, MohammadTaghi, Diameter and treewidth in minor-closed graph families, revisited, Algorithmica, 2004, 40 (3): 211–215 [2019-04-25], doi:10.1007/s00453-004-1106-1, (
原始 内容 存 档于2019-09-20) (英 语). - Demaine, Erik D.; Hajiaghayi, MohammadTaghi; Thilikos, Dimitrios M., 1.5-Approximation for treewidth of graphs excluding a graph with one crossing as a minor, Proc. 5th International Workshop on Approximation Algorithms for Combinatorial Optimization (APPROX 2002), Lecture Notes in Computer Science 2462, Springer-Verlag: 67–80, 2002, doi:10.1007/3-540-45753-4_8 (
英 语) - Diestel, Reinhard, Graph Theory 3rd, Berlin, New York: Springer-Verlag, 2005 [2019-04-25], ISBN 978-3-540-26183-4, (
原始 内容 存 档于2011-07-28) (英 语). - Ding, Guoli, Excluding a long double path minor, Journal of Combinatorial Theory, Series B, 1996, 66 (1): 11–23, MR 1368512, doi:10.1006/jctb.1996.0002 (
英 语). - Eppstein, David, Diameter and treewidth in minor-closed graph families, Algorithmica, 2000, 27: 275–291, MR 1759751, arXiv:math.CO/9907126 , doi:10.1007/s004530010020 (
英 语). - Fellows, Michael R.; Langston, Michael A., Nonconstructive tools for proving polynomial-time decidability, Journal of the ACM, 1988, 35 (3): 727–739, doi:10.1145/44483.44491 (
英 语). - Grohe, Martin, Local tree-width, excluded minors, and approximation algorithms, Combinatorica, 2003, 23 (4): 613–632, arXiv:math/0001128 , doi:10.1007/s00493-003-0037-9 (
英 语). - Hadwiger, Hugo, Über eine Klassifikation der Streckenkomplexe, Vierteljschr. Naturforsch. Ges. Zürich, 1943, 88: 133–143 (
英 语). - Hall, Dick Wick, A note on primitive skew curves, Bulletin of the American Mathematical Society, 1943, 49 (12): 935–936, doi:10.1090/S0002-9904-1943-08065-2 (
英 语). - Kawarabayashi, Ken-ichi; Kobayashi, Yusuke; Reed, Bruce, The disjoint paths problem in quadratic time, Journal of Combinatorial Theory, Series B, March 2012, 102 (2): 424–435, doi:10.1016/j.jctb.2011.07.004 (
英 语) - Kostochka, Alexandr V., The minimum Hadwiger number for graphs with a given mean degree of vertices, Metody Diskret. Analiz., 1982, 38: 37–58 (
俄 语). - Kostochka, Alexandr V., Lower bound of the Hadwiger number of graphs by their average degree, Combinatorica, 1984, 4: 307–316, doi:10.1007/BF02579141 (
英 语). - Lovász, László, Graph minor theory, Bulletin of the American Mathematical Society, 2006, 43 (1): 75–86, doi:10.1090/S0273-0979-05-01088-8 (
英 语). - Mader, Wolfgang, Homomorphieeigenschaften und mittlere Kantendichte von Graphen, Mathematische Annalen, 1967, 174 (4): 265–268, doi:10.1007/BF01364272 (
英 语). - Nešetřil, Jaroslav; Ossona de Mendez, Patrice, Sparsity: Graphs, Structures, and Algorithms, Algorithms and Combinatorics 28, Springer: 62–65, 2012, ISBN 978-3-642-27874-7, MR 2920058, doi:10.1007/978-3-642-27875-4 (
英 语). - Pegg, Ed, Jr., Book Review: The Colossal Book of Mathematics (PDF), Notices of the American Mathematical Society, 2002, 49 (9): 1084–1086 [2019-04-25], Bibcode:2002ITED...49.1084A, doi:10.1109/TED.2002.1003756, (
原始 内容 存 档 (PDF)于2019-04-02) (英 语). - Plotkin, Serge; Rao, Satish; Smith, Warren D., Shallow excluded minors and improved graph decompositions, Proc. 5th ACM–SIAM Symp. on Discrete Algorithms (SODA 1994): 462–470, 1994 (
英 语). - Reed, Bruce; Wood, David R., A linear-time algorithm to find a separator in a graph excluding a minor, ACM Transactions on Algorithms, 2009, 5 (4): Article 39, doi:10.1145/1597036.1597043 (
英 语). - Robertson, Neil; Seymour, Paul, Graph minors. I. Excluding a forest, Journal of Combinatorial Theory, Series B, 1983, 35 (1): 39–61, doi:10.1016/0095-8956(83)90079-5 (
英 语). - Robertson, Neil; Seymour, Paul D., Graph minors. V. Excluding a planar graph, Journal of Combinatorial Theory, Series B, 1986, 41 (1): 92–114, doi:10.1016/0095-8956(86)90030-4 (
英 语) - Robertson, Neil; Seymour, Paul D., Excluding a graph with one crossing, Robertson, Neil; Seymour, Paul (编), Graph Structure Theory: Proc. AMS–IMS–SIAM Joint Summer Research Conference on Graph Minors, Contemporary Mathematics 147, American Mathematical Society: 669–675, 1993 (
英 语). - Robertson, Neil; Seymour, Paul D., Graph Minors. XIII. The disjoint paths problem, Journal of Combinatorial Theory, Series B, 1995, 63 (1): 65–110, doi:10.1006/jctb.1995.1006 (
英 语). - Robertson, Neil; Seymour, Paul D., Graph Minors. XVI. Excluding a non-planar graph, Journal of Combinatorial Theory, Series B, 2003, 89 (1): 43–76, doi:10.1016/S0095-8956(03)00042-X (
英 语). - Robertson, Neil; Seymour, Paul D., Graph Minors. XX. Wagner's conjecture, Journal of Combinatorial Theory, Series B, 2004, 92 (2): 325–357, doi:10.1016/j.jctb.2004.08.001 (
英 语). - Robertson, Neil; Seymour, Paul; Thomas, Robin, Hadwiger's conjecture for K6-free graphs (PDF), Combinatorica, 1993, 13: 279–361 [2019-04-25], doi:10.1007/BF01202354, (
原始 内容 (PDF)存 档于2009-04-10) (英 语). - Thomas, Robin, Recent excluded minor theorems for graphs, Surveys in combinatorics, 1999 (Canterbury) (PDF), London Math. Soc. Lecture Note Ser. 267, Cambridge: Cambridge Univ. Press: 201–222, 1999 [2019-04-25], MR 1725004, (
原始 内容 (PDF)存 档于2016-08-03) (英 语). - Thomason, Andrew, An extremal function for contractions of graphs, Mathematical Proceedings of the Cambridge Philosophical Society, 1984, 95 (2): 261–265, Bibcode:1983MPCPS..95..261T, doi:10.1017/S0305004100061521 (
英 语). - Thomason, Andrew, The extremal function for complete minors, Journal of Combinatorial Theory, Series B, 2001, 81 (2): 318–338, doi:10.1006/jctb.2000.2013 (
英 语). - Wagner, Klaus, Über eine Eigenschaft der ebenen Komplexe, Math. Ann., 1937a, 114: 570–590, doi:10.1007/BF01594196 (
英 语). - Wagner, Klaus, Über eine Erweiterung des Satzes von Kuratowski, Deutsche Mathematik, 1937b, 2: 280–285 (
英 语).