(Translated by https://www.hiragana.jp/)
胸苷激酶 - 维基百科,自由的百科全书 とべ转到内容ないよう

むね苷激酶

维基百科ひゃっか自由じゆうてき百科ひゃっかぜん
むね苷激酶
Crystal structure of a tetramer of thymidine kinase from U. urealyticum (where the monomers are color cyan, green, red, and magenta respectively) in complex with thymidine (space-filling model, carbon = white, oxygen = red, nitrogen = blue).[1]
识别码
ECへんごう 2.7.1.21
CASごう 9002-06-6
かずすえ
IntEnz IntEnz浏览
BRENDAえいBRENDA BRENDA入口いりくち
ExPASyえいExPASy NiceZyme浏览
KEGG KEGG入口いりくち
MetaCycえいMetaCyc だい谢路みち
PRIAMえいPRIAM_enzyme-specific_profiles がいじゅつ
PDB RCSB PDB PDBj PDBe PDBsum
もといん本体ほんたい AmiGO / EGO
むね苷激酶
鑑定かんてい
しるべTK
PfamPF00265旧版きゅうばん
PfamむねけいCL0023旧版きゅうばん
InterProえいInterProIPR001267
PROSITEえいPROSITEPDOC00524
むね苷激酶1,
識別しきべつ
符號ふごう TK1
Entrez 7083
HUGO 11830
OMIM 188300
RefSeq NM_003258
UniProt P04183
其他資料しりょう
ECへんごう 2.7.1.21
もといん 17 q23.2-25.3
むね苷激酶2,线粒たい
識別しきべつ
符號ふごう TK2
Entrez 7084
HUGO 11831
OMIM 188250
RefSeq NM_004614
UniProt O00142
其他資料しりょう
ECへんごう 2.7.1.21
もといん 16 [1]

むね苷激酶英語えいごthymidine kinase一种磷酸转移酶(げき):2’-だつ氧胸苷激酶,さん磷酸せん苷-むね苷 5’-磷酸转移酶,EC 2.7.1.21[2][3]存在そんざい于大部分ぶぶんかつたい细胞ちゅう。它以两种同工どうこう酶的形式けいしき存在そんざい哺乳ほにゅう动物细胞ちゅう,TK1TK2。ぼう病毒びょうどくどう含有がんゆうびょう毒性どくせいむね苷激酶表达的遗传しんいき

むね苷激酶催以下いかはん应:

•Thd + ATP → TMP + ADP

Thdだつ氧胸苷,ATP5’-さん磷酸-せん苷,TMP5’-いち磷酸-だつ氧胸苷,ADP5’-磷酸-せん苷。

むね苷激酶的主要しゅよう作用さようたい现在细胞分裂ぶんれつ过程ちゅうてきDNA合成ごうせいかい导脱氧胸苷进にゅうDNA合成ごうせいてきつくり经的いち部分ぶぶんだつ氧胸苷存在そんざい于体えきちゅう食物しょくもつ细胞あるつくえたい细胞死亡しぼうきさき,DNA凋亡退化たいかてき产物。很多こう病毒びょうどく药物てきはん应都需要じゅようむね苷激酶的参与さんよ

むね苷激酶可よう于在せい产单かつたかし抗体こうたい过程ちゅう,筛选杂交こぶ细胞。临床医学いがくちゅうむね苷激酶作为一种细胞增殖标志物,よう于恶せい肿瘤てき辅助诊断,疗监ひかえ跟踪ずい访。最近さいきん也有やゆう研究けんきゅう报道提出ていしゅつむね苷激酶在早期そうきがんしょう预防ちゅうてき应用价值。

历史

[编辑]

むね参与さんよDNA合成ごうせいてき经是ざい1950ねんまえきさき发现てき[4]きさきらいいちあきら确,这一途经始于胸苷的磷酸化[5]ざい1960ねん左右さゆう参与さんよ此过ほどてきげき酶(むね苷激酶)くび纯化出来でき并进ぎょうりょう鉴定[6][7]


ぶん

[编辑]

目前もくぜんやめいた鉴别てきむね苷激酶可ぶん为两だい[8][9]

いち存在そんざい疱疹病毒びょうどくあずか细胞むね苷激酶类似;

一类广泛存在于脊椎动物,细菌,T4噬菌たい,痘病毒びょうどくしゅういのしし病毒びょうどく(ASFV)かず淋巴りんぱ囊肿病毒びょうどく(FLDV)。昆虫こんちゅう虹彩こうさい病毒びょうどくころも壳蛋白也はくやぞく于此类。

目前もくぜんただ确认りょう细胞むね苷激酶的蛋白たんぱくてん模型もけい

なまとくてん

[编辑]

高等こうとう生物せいぶつむね苷激酶以两种同工どうこう酶形しき存在そんざい,TK1TK2,具有ぐゆう很大てき化学かがく异性。

ぜん一种最初在胎儿组织中发现,きさき一种大量存在于成人组织,所以ゆえん最初さいしょぶん命名めいめい为胎儿胸苷激酶和成人せいじんむね苷激酶。久之ひさゆききさき发现,TK1仅于细胞分裂ぶんれつ初期しょきあずか细胞周期しゅうきしょう关)存在そんざい于细胞质ちゅう[10][11],而TK2定位ていい于线つぶたいちゅうあずか细胞周期しゅうき无关[12][13]

1970年代ねんだい中期ちゅうき定位ていいりょう两种酶的もといん[14][15],TK1いんてきかつ隆和たかかず测序完成かんせい[16],其所对应蛋白たんぱくてき分子ぶんしりょう为25kD;通常つうじょう以二聚体的形式出现在组织中,のう够被ATPげきかつげきかつきさき,转化为四聚体。じゅう组后てきTK1无法げきかつ也无ほう转化为四聚体,表明ひょうめい这种存在そんざい于细胞中てきげき酶在合成ごうせいきさき性状せいじょうやめ经发せいりょうあらため[17][18][19]

细胞ちゅうTK1てき合成ごうせい发生ざい细胞分裂ぶんれつ周期しゅうきてきS。细胞分裂ぶんれつ完成かんせいきさき,TK1ざい细胞内部ないぶくだかいいん此在正常せいじょう细胞分裂ぶんれつちゅう,TK1一般不会进入体液[20]。细胞ちゅうむね苷激酶的はん馈调节作ようつくえさん磷酸むね苷(TTP:むね苷磷酸化さんかきさきてき终产ぶつふんえんじむね苷激酶抑制よくせい剂的かくしょく[21][22][23][24]。这一机制确保了核酸合成所需的TTPりょう维持ざい平衡へいこうじょう态,而不かい现过饱和。5'-氨基むね苷是一种无毒性的胸苷类似物,のう够干扰这いち调控つくえいん此,むね苷类ぶつさく为一种细胞毒性物质被应用于很多抗肿瘤药物[25][26][27][28][29][30][31]

一些病毒的特殊胸苷激酶基因也已经得到了鉴别,如单纯疱疹病毒びょうどく水痘すいとう带状疱疹病毒びょうどくEB病毒びょうどく(一种疱疹病毒)[32][33][34][35][36][37][38]

生理学せいりがく背景はいけい

[编辑]

むね苷激酶催はん应的产物——一磷酸脱氧胸苷,かい继续むね苷酸げき酶催生成せいせい二磷酸脱氧胸苷,これきさきさい二磷酸核苷激酶催化生成三磷酸脱氧胸苷。ざい互补DNADNA聚合酶的催化作用さようあるぎゃく转录过程ちゅうざいRNAぎゃく转录酶的作用さよう),三磷酸脱氧胸苷进入了DNA分子ぶんし

一磷酸脱氧胸苷可由两种不同的反应得到——一种是前文所述的脱氧胸苷磷酸化反应得到;还有一种是在不动用胸苷的情况下,つう过胸苷酸磷酸酶催其他だい谢途みち产生てきだつ氧尿苷甲もとはん应得いた。细胞ざい正常せいじょうじょう况下(细胞分裂ぶんれつじょう态)さいようだい二种途径为DNAおさむ提供ていきょう充足じゅうそくてき一磷酸脱氧胸苷。ただしとう细胞じゅん分裂ぶんれつ时,需要じゅよう构建いち组全しんてきDNA,对组なりDNAてき材料ざいりょう,如三磷酸脱氧胸苷的需求也增加了。ざいじゅん备细胞分裂ぶんれつてき过程ちゅう,一些细胞分裂所必需的酶开始产生。

这些酶平时不存在そんざい于细胞中,とう细胞分裂ぶんれつ完成かんせいきさきざい调控浓度くだていさい终降かい。这一类酶被称为补救酶。むね苷激酶1(TK1)就是いち种补すくい酶,ただしむね苷激酶2(TK2)却与细胞周期しゅうきあい[39][40][41][42][43][44][45][46][47]

用途ようと

[编辑]

鉴别处于分裂ぶんれつてき细胞

[编辑]

むね苷激酶在せい研究けんきゅうちゅうてきだい一种直接应用是联合放射ほうしゃせい标记てきむね苷和きさき继用らい测定放射ほうしゃ活性かっせいてき放射ほうしゃ显影わざ术来鉴别处于分裂ぶんれつてき细胞。为了达到此目的もくてき,氚化てきむね苷需保存ほぞんざいつちかえ养基ちゅう[48] つきかんわざ术上存在そんざい缺陷けっかん,该技术仍もちいらい测定恶性肿瘤细胞てき增殖ぞうしょく比例ひれい研究けんきゅう免疫めんえき过程ちゅう淋巴りんぱ细胞てき活性かっせい

PET 扫描かつたい肿瘤

[编辑]

3’-だつ氧-3’-[氟18]氟化むね苷是一种胸苷类似物。它由むね苷激酶1调控,迅速じんそく增殖ぞうしょくてき肿瘤组织优先摄取。同位どういもと氟18一种在正电子发射型断层显像技术(PET)ちゅう常用じょうようてきせい电子发射たい。这种标记ぶつ另一常用じょうようてき标记ぶつ2-[氟18]氟基-2-だつ氧-D-葡萄糖ぶどうとうしょうざい增殖ぞうしょくじょう态的かつたい肿瘤てきPETなりぞう方面ほうめんさらゆう优势[49][50][51][52][53]

筛选杂交こぶ细胞

[编辑]

杂交こぶ细胞肿瘤细胞(具有ぐゆう无限分裂ぶんれつ能力のうりょくB淋巴りんぱ细胞融合ゆうごうきさき获得てき。杂交こぶ细胞のう够持续、大量たいりょう产生具有ぐゆう专属とく异性てき免疫めんえきだま蛋白たんぱく(单克たかし抗体こうたい)。ただし问题如何いかざい细胞融合ゆうごうきさき,从大量的りょうてきあまりてき融合ゆうごう细胞ちゅう,挑选杂交こぶ细胞。

一种解决该问题的方法就是使用胸苷激酶阴性(TK-)てき肿瘤细胞けい进行融合ゆうごうざい增殖ぞうしょくてき肿瘤细胞けいちゅう加入かにゅうむね苷类ぶつはた杀死むね苷激酶阳せい(TK+)细胞,如此就得いたりょうむね苷激酶阴せい细胞。しかきさき,这些阴性细胞ようらいあずかむね苷激酶阳せいてき(TK+)B淋巴りんぱ细胞进行融合ゆうごう融合ゆうごうきさき,细胞需在添加てんかりょう氨甲ちょう[54]ある氨基ちょう[55]てきつちかえ养基ちゅうつちかえ养,以防止ぼうし二氢叶酸还原酶阻碍一磷酸胸苷的重新合成。つちかえ养基一般いっぱん选用HATつちかえ养基(含有がんゆう嘌呤,氨基ちょう呤,胸腺きょうせん嘧啶だつ氧核苷)。 むね苷激酶阴せい细胞けいちゅうてき融合ゆうごう细胞はたゆかり于一磷酸胸苷的断供而死亡。而未融合ゆうごう淋巴りんぱ细胞てき死亡しぼう则是よし于它们不不朽ふきゅうてき不具ふぐ备肿こぶ细胞てき无限分裂ぶんれつ能力のうりょく)。ただゆう杂交こぶ细胞よし于同时继承りょう肿瘤细胞けいてき不朽ふきゅうB淋巴りんぱ细胞てきむね苷激酶得以幸そん。这样,以用于生产所需抗体こうたいてき杂交こぶ细胞就筛选出来できりょうざいつちかえ养后よう于生产单かつたかし抗体こうたい[56][57][58][59][60]

过,さいようしょうどう原理げんり,也可以通过筛选另一种次黄嘌呤-鸟嘌呤磷さんかくとう转移酶(HGPRT)细胞けいらい达到筛选杂交こぶ细胞てき目的もくてき从而がえだいむね苷激酶,该酶ざい补救合成ごうせい经中调控鸟嘌呤核苷酸合成ごうせいしょ必须てきつぎ嘌呤てき合成ごうせい

应用あんれい

[编辑]

临床应用

[编辑]

むね苷激酶是一种补救酶,仅在细胞分裂ぶんれつ前出ぜんしゅつ现。よし于细胞具有ぐゆう特殊とくしゅてき调控つくえせいのう够降かい细胞分裂ぶんれつきさきさい需要じゅようてき酶和蛋白たんぱく所以ゆえんざい正常せいじょうてき细胞分裂ぶんれつきさきむね苷激酶不かい从细胞释放。[61]いん一般いっぱん条件下じょうけんか血清けっせいある浆中てきむね苷激酶含りょう很低。肿瘤细胞释放むね苷激酶进にゅう循环けい统,可能かのうあずかやめ死亡しぼうあるそくはた死亡しぼうてき肿瘤细胞てき瓦解がかいゆう关。よし此,血清けっせいむね苷激酶水平すいへいのう够用らい评估肿瘤てき增殖ぞうしょく程度ていど,并可以此らい直接ちょくせつ评估肿瘤てきおさむ击力。ゆう一个令人关注的情况,存在そんざい于循环系统中てきむね苷激酶与もといん编码てき酶并不一致ふいっちもといん编码てき分子ぶんしりょう为25kD。二聚体分子量为50kD,ATPげきかつ转化为四聚体きさき分子ぶんしりょう为100kD。[62]而循环系统中具有ぐゆう活性かっせいてき酶的分子ぶんしりょう为730kD,很有可能かのうあずか其他蛋白たんぱく绑定形成けいせいりょう复合ぶつ[63]

目前もくぜんむね苷激酶检测在临床应用ちゅうてき价值主要しゅようたい现在以下いか几点:

1、评估放效果こうかよし于胸苷激酶水平すいへいあずか肿瘤细胞恶性增殖ぞうしょく程度ていど具有ぐゆうしょう关性,疗前きさきてきむね苷激酶水平すいへい变化じょう况能为治疗评估提供ていきょう辅助参考さんこう

2、评估しゅ效果こうかつう过比较肿こぶ患者かんじゃしゅ术前きさき肿瘤细胞てき增殖ぞうしょくじょう况,为手术效果こうか评价提供ていきょう参考さんこう

3、评估肿瘤复发风险:对肿こぶ患者かんじゃしゅ术及疗恢复期てき残留ざんりゅう肿瘤细胞てき增殖ぞうしょくじょう态进ぎょう动态评估,较影ぞうがくさらはや发现复发转移风险。[64]

不同ふどう肿瘤类别てきむね苷激酶应ようあんれい

1、血液けつえきがく恶性肿瘤ちゅうむね苷激酶的ぞう具有ぐゆう规律せいれい如,むね苷激酶1(TK1)よう于监ひかえ霍奇きん淋巴りんぱこぶ。这种肿瘤てきおさむ击性别很だいゆう些属于慢そく增殖ぞうしょく,很难觉察难以及时疗;还有一些属于快速增殖,具有ぐゆうだかおさむ击性需要じゅよう紧急疗。这些异可以在血清けっせいむね苷激酶的水平すいへい高低こうていじょうとく以体现,あずか正常せいじょう水平すいへい相近すけちかてき对应慢速增殖ぞうしょく肿瘤,具有ぐゆう很高水平すいへいてき对应快速かいそく增殖ぞうしょく肿瘤。[65][66][67][68][69][70][71][72] 淋巴りんぱこぶ患者かんじゃ血清けっせいTK1水平すいへいますだか可能かのう预示肿瘤具有ぐゆうだか活性かっせいだかおさむ击性,いん此通过监测血清けっせいTK1水平すいへいてき变化,适合于肿こぶてき疗评估。[73]

该模がた使用しよう于其类型血液けつえき恶性肿瘤ちゅう白血病はっけつびょう[74][75][76],浆细胞骨髓こつづいこぶ[77][78]骨髓こつづいぞうせい异常综合しょう)。需要じゅよう关注てきざい骨髓こつづいぞうせい异常综合しょうちゅうゆう一部分病例会迅速转变为进行白血病,ただし还有一些在很长一段时间内进展缓慢。如果のう够鉴别出いやゆう进展为白血病はっけつびょうてき趋势はた对治疗非常ひじょう重要じゅうよう

2、实体肿瘤ちゅうむね苷激酶的ますだか往往おうおう也与肿瘤恶性增殖ぞうしょく程度ていど效果こうか,复发じょう具有ぐゆうしょう关性[79][80][81][82]ゆう报告指出さしでざい前列ぜんれつせんがんしょうちゅうむね苷激酶能够如どうPSA(前列ぜんれつせんとく抗原こうげん目前もくぜん前列ぜんれつせんがんちゅう使用しようさい频繁てき肿瘤标志ぶつ)一样提供辅助参考。PSA提示ていじ肿瘤大小だいしょう,而TK提示ていじ肿瘤增殖ぞうしょく速度そくど[83][84][85][86]。对于其他实体肿瘤,如しょう细胞肺癌はいがん[87][88][89]乳腺にゅうせんがん[90][91][92]胃癌いがん[93]肾癌[94]膀胱ぼうこうがん[95]とうゆう应用价值。

恶性肿瘤而造成ぞうせい血清けっせいむね苷激酶升だかてき原因げんいんゆう维生もとB12缺乏けつぼう引起てき恶性贫血,[96][97]病毒びょうどく感染かんせん部分ぶぶんよし于疱疹病毒びょうどく[97][98][99] あるせい处于创伤、术恢复期[100]

恶性增殖ぞうしょく风险评估

[编辑]

よし于胸苷激酶1あずか细胞增殖ぞうしょくてきしょう关性,きん些年らいゆう关于むね苷激酶1对于进展がんまえびょう变的检测义,及在がんしょう预防たい检中てき应用价值てきさがせ讨。

ゆう研究けんきゅう指出さしでむね苷激酶1水平すいへい高低こうていあずか同年どうねん龄结构,及所处不どう生活せいかつ工作こうさく环境てき肿瘤发生风险具有ぐゆうしょう关性,ざい进行长期跟踪きさき,TK1水平すいへいてきもち续升だかあずかところ患癌まえびょう变的恶性进程具有ぐゆうしょう关性,ざい早期そうき恶性肿瘤びょう变预ぼうちゅうのう够发挥一定いってい作用さよう[101][102]

[编辑]

ゆう些药ぶつ专门针对分裂ぶんれつ细胞有效ゆうこう。一般被用来治疗肿瘤和病毒性疾病(どう时作よう于逆转录病毒びょうどく其他病毒びょうどく),这是よし于病变细胞比正常せいじょう细胞复制さらかいさら频繁,どう时也かい杀死一些复制迅速地非恶性肿瘤细胞。

ゆう不同ふどう种类てき药物以控せい细胞分裂ぶんれつ过快,のう直接ちょくせつ作用さよう于胸苷代谢也いん此与むね苷激酶有关联[103][104][105][106]

むね苷类ぶつさく为DNA链终とめぶつ进入DNA链复せいただしよし于结构已经改变所以ゆえん抑制よくせいりょうDNA链的のべ长。さく为胸苷类ぶつさら容易ようい磷酸生成せいせい5’-いち磷酸复合ぶつ。一磷酸复合物进一步磷酸化生成三磷酸复合物参与到DNA链的复制。ただし类似ぶつ结构ゆうしょ变化,一般いっぱん具有ぐゆうDNA链复せいしょ必须てき3’はし羟基。如:叠氮むね(AZT;ATC:J05AF01)てき3’はし羟基叠氮もとがえだい[107][108] そうだつ氧胸苷(ATC:J05AF04)のう够竞そうせい抑制よくせいむね苷。[109][110] AZTざい一种检测血清胸苷激酶的方法中被用做底物。[111]意味いみAZTかい扰这一步骤或是作为一种抑制剂: AZT针对HIV(あいしげるびょう病毒びょうどく感染かんせんてきHAART(Highly Active Antiretroviral Therapy だか活性かっせいこうぎゃく转录病毒びょうどく疗法)疗法てき组分いち。AIDSてきさい终结はて一般いっぱん淋巴りんぱがん,而胸苷激酶检测的一项最重要的诊断应用就是监控淋巴癌。

酶底ぶつ类似物的ぶってき化学かがく结构

[编辑]

其他むね苷类ぶつ,如碘苷(ATC:J05AB02)のう够在ずいきさきてき复制循环ちゅう阻碍そがいもと础配对,さい终导致DNA合成ごうせい缺陷けっかん[112]此物质结ごう疗能够达到促使恶性肿瘤细胞凋亡てき目的もくてき[113]

一些抗病毒药物,如阿むかしらく韦(ATC:J05AB01)さらむかしらく韦(ATC:J05AB06)あずか其他一些研究成功的核酸类似物一样,[114]则是利用りようりょう病毒びょうどくむね苷激酶而对人むね苷激酶的专属とく异性。[115]这些药物つくえ如同ぜんからだ药物,本身ほんみ不具ふぐ有毒ゆうどくせいただし病毒びょうどくむね苷激酶磷酸化さんかきさきかい转变为细胞毒せい药物。感染かんせんりょう病毒びょうどくてき细胞よし于产生出おいでだか细胞毒性どくせいてき三磷酸核苷最终导致细胞的凋亡。而相反あいはんてきにんむね苷激酶由于其专属とく异性,かい磷酸而激かつぜんからだ药物。よし此,ただゆう感染かんせんりょう病毒びょうどくてき细胞对药ぶつ敏感びんかん。这些药物仅对具有ぐゆうとく异的疱疹病毒びょうどく类胸苷激酶的病毒びょうどく有效ゆうこう[116]

1979ねん12月,WHO宣布せんぷ天花てんげ病毒びょうどくやめ经根じょきさき牛痘ぎゅうとうせっ种项也已经终とめりょう。该病毒びょうどく如果よし于意がい事故じこあるさく为生武器ぶきじゅう新出しんで现,しょうかいざい毫无ぼう备的じんぐんちゅうばく发性传播而难以控せいせっ种牛痘似乎是不道德ふどうとくてきいん为唯いち对天はな有效ゆうこうてき疫苗本身ほんみ就含有用ゆうよう刺激しげきつくえたい产生免疫めんえき效果こうかはん应的活性かっせい牛痘ぎゅうとう病毒びょうどくただし于安ぜん问题こう虑,ゆう大量たいりょうてき疫苗需要じゅよう长期储备,其中以高こうてきこう天花てんげ药物さい为优さきいち可能かのうてき方式ほうしき利用りよう病毒びょうどくむね苷激酶的とく异性らい达到目的もくてき作用さようつくえあずかこう疱疹病毒びょうどく类药ぶつ类似。ゆういち个难てん病毒びょうどくむね苷激酶与じんむね苷激酶属于同いち家族かぞく谱系,化学かがく结构相似そうじ目前もくぜん病毒びょうどくてき结构やめ经探あきら并正ざい寻找潜在せんざいてきこう病毒びょうどく药物。[117]ただし有效ゆうこうてきこう病毒びょうどく药物研究けんきゅうなお无结はて

疱疹病毒びょうどくむね苷激酶基いん也当做“杀基いんさく为基いん疗实验中てき安全あんぜんけい统,诱导细胞ひょう达该もといんきさきさらむかしらく韦杀。此种方法ほうほう适用于通过重组基いん诱发突变而最终导致的细胞增殖ぞうしょくしつひかえ(诱导突变)。这些突变细胞产生てきむね苷激酶扩にゅうしゅう围细胞中,かい导致しゅう围细胞同样对さらむかしらく韦敏かん,该现ぞうしょう为“つくり观者こう应”。此方こちらほうやめよう于动物体ぶったいてき肿瘤疗,ゆう10%てき恶性肿瘤细胞ひょう达该もといん并会有效ゆうこう杀死。[118][119]利用りよう一些肿瘤所特有的物质(肿瘤标志ぶつ)也能实现类似てきむね苷激酶应よう。这些肿瘤标志ぶつ,如CEA(がんはい抗原こうげんかずAFP(きのえ胎蛋しろ)。はた这些肿瘤标志物的ぶってきもといんさく为胸苷激酶的启动もといんむね苷激酶将ざいひょう达肿こぶ标志ぶつもといんてき细胞ちゅうげきかつざい正常せいじょう细胞ちゅう则不かいいん此使ようさらむかしらく韦治疗只かい杀死肿瘤细胞。[120][121][122][123][124][125]つきかん如此,这些もといん疗方ほう仍在实验阶段,一些与基因转移相关的问题,还未完全かんぜんかい决。

一种含硼元素的胸苷类似物已经被建议并用于BNCTほう(硼-中子なかご交互こうご放射ほうしゃ疗法)疗脑肿瘤てき动物实验。[126][127][128][129][130][131][132][133][134][135][136]

检测方法ほうほう

[编辑]

血清けっせいがく

[编辑]

血清けっせいむね苷激酶检测主よう检测むね苷激酶1(TK1),检测方法ほうほう目前もくぜん主要しゅようゆう两类,一种是酶活性测定法;一种是酶浓度测定法。

使用しよう酶活せい测定ほう,一般通过将血清样本和底物类似物共同培养来实现。最初さいしょてきしょう业可ぎょうせいわざ术是使用しよう碘代だつ氧尿苷,そく使用しよう放射ほうしゃせい碘替だいりょうむね苷的いち个甲もと[137][138][139]该底ぶつのう够被酶很このみてき识别。いち磷酸てき碘代だつ氧尿苷被添加てんかざいつちかえ养基ちゅうてき氧化铝所吸附。ざい倾倒あらいだつきさき,氧化铝的放射ほうしゃせい算出さんしゅつ样本ちゅうむね苷激酶的りょう。应用此原理げんりてきしょう业试剂盒よし贝克曼公司こうしさく公司こうし提供ていきょう

此外さく公司こうし研究けんきゅういち种非放射ほうしゃせい分析ぶんせき方法ほうほうざい该技术中3’-叠氮-2’,3’-だつ氧胸苷(AZT:叠氮むね苷)くびさき样本ちゅうてきTK1磷酸生成せいせい5’-いち磷酸-AZT(AZTMP:叠氮むね苷一磷酸)。AZTMPどおり过免疫学えきがく方法ほうほう测定,使用しようこう-AZTMP抗体こうたい为AZTMP标记じょう过氧化物ばけもの。测定需在さく公司こうし提供ていきょうてきふう闭式实验工作こうさくけい统内进行。[140][111]

另一种新研发的技术是使用胸苷类似物——溴化尿にょう苷,さく为酶そこぶつはん应产ぶつざい微量びりょうしずくていいたちゅう)吸附ざいしずくていいたかくあなてき底部ていぶさいつう过ELISA方法ほうほう测定:ざいかくあなちゅう加入かにゅうこう溴化尿にょう苷的单克たかし抗体こうたい溶液ようえき。单克たかし抗体こうたいじょう结合ゆう碱性磷酸酶。あらいだつ掉过量的りょうてき结合ゆう碱性磷酸酶的抗体こうたい加入かにゅう含有がんゆう碱性磷酸酶底ぶつ——4-硝基苯酚てき溶液ようえきはん应产ぶつ4-硝基酚在磷酸pH环境ちゅう黄色おうしょくのう够通过光度こうどほう测定。[141]此种分析ぶんせき方法ほうほうのう够进ぎょうさら灵敏てき检测。しょう业试剂盒よしBiovica公司こうし提供ていきょう

使用しよう酶浓测定ほう一般いっぱん对抗TK1抗体こうたいてき灵敏要求ようきゅう很高,これぜん很长一段时间内没有突破。20せい纪末いたり21せい纪初,みずてんkarolinska医学いがくいん利用りよう鸟类とく异性IgY抗体こうたい,开发一种新型多克隆抗体——こうじんTK1-IgY抗体こうたい,并申请了こく际专,此抗体こうたい具有ぐゆう很高てき灵敏とく异性,のう够识别人血清けっせいちゅうてい浓度TK1。[142]抗体こうたいざい结合化学かがく发光检测わざ术后,进一步提高了检测灵敏度。商用しょうよう试剂盒由SSTK公司こうし中国ちゅうごくふか圳)提供ていきょう

组织がく

[编辑]

从组织提もの样本ちゅうのう够检测到むね苷激酶。ただしなおぼっゆう标准てき组织ひっさげある分析ぶんせき方法ほうほう,组织细胞ひっさげものちゅうてきTK检测与实际临床问题てきしょう关性也未いた证实。见Romainとう[143]かずArnérとう[144]ゆういち种方ほう使用しよう5’-溴-2’-だつ氧尿苷作为底ぶつ类似ぶつとく异性检测细胞ひっさげものちゅうてきTK2。[145]ただしざい使用しよう此方こちら法的ほうてき其他研究けんきゅうちゅう,报告てき结果异很だい方法ほうほうぎょうせいけい

处于发展阶段てき胎儿组织てきTK1水平すいへいきさきようだか[146][147][148]

ぼう些非恶性肿瘤细胞组织ちゅうてきTK1水平すいへい也会现明显升だか:如存在そんざい单核细胞ぞうしょう时的しゅう淋巴りんぱ细胞,[149]存在そんざい恶性贫血てき骨髓こつづい细胞。[150][151]

よし于TK1存在そんざい于处于分裂ぶんれつてき细胞ちゅういん此有理由りゆう认为恶性肿瘤组织ちゅうてきTK活性かっせい应比正常せいじょう组织ちゅうてきようだか。这已ざいだい部分ぶぶんてき研究けんきゅうちゅういた证实。肿瘤组织ちゅうTK活性かっせいいち般组织要だか[146][152][153][154],如脑こぶ[155]血液けつえきけい统恶せい肿瘤[156],结肠がん结肠いきにく[157][158][159][160][161][162]乳腺にゅうせんがん[163][164][165][166][167][168]肺癌はいがん[169][170][171]胃癌いがん[172]卵巢らんそうがん[173],间皮こぶ[174]くろ色素しきそこぶ[175]かず甲状腺こうじょうせん肿瘤[176][177]

对于白血病はっけつびょう[178][179]かず乳腺にゅうせんがん[180]疗对细胞增殖ぞうしょくそくりつてきかげ响与对TK值的かげ响是よししょう关性てき

免疫めんえき组织化学かがく染色せんしょく

[编辑]

こうむね苷激酶抗体こうたい以用于免疫组检测。[181]むね苷激酶染しょく就是一种可靠的用于鉴别2乳腺にゅうせんがん患者かんじゃてきわざ术。むね苷激酶和Ki-67染色せんしょくわざ术的联合使用しようやめ经使相当そうとうおおてき患者かんじゃいたりょう诊断。[182][183]

该技术对肺癌はいがん[182][184],结直肠癌[185]しょう细胞肺癌はいがん[186]かず肾癌[187]具有ぐゆうどう样价值。

标签

[编辑]

むね苷激酶1;疱疹病毒びょうどくむね苷激酶;むね苷酸げき酶;二磷酸核苷激酶;むね苷酸合成ごうせい

参考さんこう文献ぶんけん

[编辑]
  1. ^ PDB 2B8T; Kosinska U, Carnrot C, Eriksson S, Wang L, Eklund H. Structure of the substrate complex of thymidine kinase from Ureaplasma urealyticum and investigations of possible drug targets for the enzyme. FEBS J. December 2005, 272 (24): 6365–72. PMID 16336273. doi:10.1111/j.1742-4658.2005.05030.x. 
  2. ^ Kit S (December 1985). "Thymidine kinase". Microbiol. Sci. 2 (12): 369–75.
  3. ^ Wintersberger E (February 1997). "Regulation and biological function of thymidine kinase". Biochem. Soc. Trans. 25 (1): 303–8.
  4. ^ Reichard P, Estborn B (February 1951). "Utilization of desoxyribosides in the synthesis of polynucleotides". J. Biol. Chem. 188 (2): 839–46.
  5. ^ Kornberg A, Lehman IR, Simms ES (1956). "Polydeoxyribonucleotide synthesis by enzymes from Eschrichia coli". Fed. Proc. 15: 291–2.
  6. ^ Bollum FJ, Van Potter R (August 1958). "Incorporation of thymidine into deoxyribonucleic acid by enzymes from rat tissues". J. Biol. Chem. 233 (2): 478–82.
  7. ^ Weissman SM, Smellie RMS, Paul J (December 1960). "Studies on the biosynthesis of deoxyribonucleic acid by extracts of mammalian cells. IV. The phosphorylation of thymidine". Biochim. Biophys. Acta 45: 101–10.
  8. ^ Boyle DB, Gibbs AJ, Seigman LJ, Both GW, Coupar BE (1987). "Fowlpox virus thymidine kinase: nucleotide sequence and relationships to other thymidine kinases". Virology 156 (2): 355–365.
  9. ^ Lopez-Otin C, Blasco R, Vinuela E, Munoz M, Simon-Mateo C, Bockamp EO (1990). "Sequence and evolutionary relationships of African swine fever virus thymidine kinase". Virology 178 (1): 301–304.
  10. ^ Littlefield JW (February 1966). "The periodic synthesis of thymidine kinase in mouse fibroblasts". Biochim. Biophys. Acta 114 (2): 398–403
  11. ^ Bello LJ (December 1974). "Regulation of thymidine kinase synthesis in human cells". Exp. Cell Res. 89 (2): 263–74.
  12. ^ Berk AJ, Clayton DA (April 1973). "A genetically distinct thymidine kinase in mammalian mitochondria. Exclusive labeling of mitochondrial deoxyribonucleic acid". J. Biol. Chem. 248 (8): 2722–9.
  13. ^ Berk AJ, Meyer BJ, Clayton DA (February 1973). "Mitochondrial-specific thymidine kinase". Arch. Biochem. Biophys. 154 (2): 563–5.
  14. ^ Elsevier SM, Kucherlapati RS, Nichols EA, Creagan RP, Giles RE, Ruddle FH, Willecke K, McDougall JK (October 1974). "Assignment of the gene for galactokinase to human chromosome 17 and its regional localisation to band q21-22". Nature 251 (5476): 633–6.
  15. ^ Willecke K, Teber T, Kucherlapati RS, Ruddle FH (May 1977). "Human mitochondrial thymidine kinase is coded for by a gene on chromosome 16 of the nucleus". Somatic Cell Genet. 3 (3): 237–45
  16. ^ Flemington E, Bradshaw HD, Traina-Dorge V, Slagel V, Deininger PL (1987). "Sequence, structure and promoter characterization of the human thymidine kinase gene". Gene 52 (2–3): 267–77.
  17. ^ Welin M, Kosinska U, Mikkelsen NE, et al. (December 2004). "Structures of thymidine kinase 1 of human and mycoplasmic origin". Proc. Natl. Acad. Sci. U.S.A. 101 (52): 17970–5.
  18. ^ Munch-Petersen B, Cloos L, Jensen HK, Tyrsted G (1995). "Human thymidine kinase 1. Regulation in normal and malignant cells". Adv. Enzyme Regul. 35: 69–89.
  19. ^ Li CL, Lu CY, Ke PY, Chang ZF (January 2004). "Perturbation of ATP-induced tetramerization of human cytosolic thymidine kinase by substitution of serine-13 with aspartic acid at the mitotic phosphorylation site". Biochem. Biophys. Res. Commun. 313 (3): 587–93.
  20. ^ Zhu C, Harlow LS, Berenstein D, Munch-Petersen S, Munch-Petersen B (2006). "Effect of C-terminal of human cytosolic thymidine kinase (TK1) on in vitro stability and enzymatic properties". Nucleosides Nucleotides Nucleic Acids 25 (9–11): 1185–8.
  21. ^ 引用いんよう错误:ぼつゆう为名为pmid7572355てき参考さんこう文献ぶんけん提供ていきょう内容ないよう
  22. ^ null Van Potter. FEEDBACK INHIBITION OF THYMIDINE KINASE BY THYMIDINE TRIPHOSPHATE. Experimental Cell Research. 1963, 24: SUPPL9:259–262 [2019-05-26]. ISSN 0014-4827. PMID 14046233. 
  23. ^ E. S. Severin, A. V. Itkes, O. N. Kartasheva, V. L. Tunitskaya, K. T. Turpaev, C. A. Kafiani. Regulation of 2-5 A phosphodiesterase activity by cAMP-dependent phosphorylation: mechanism and biological role. Advances in Enzyme Regulation. 1985, 23: 365–376 [2019-05-26]. ISSN 0065-2571. PMID 3000146. 
  24. ^ Nils Egil Mikkelsen, Kenth Johansson, Andreas Karlsson, Wolfgang Knecht, Gorm Andersen, Jure Piskur, Birgitte Munch-Petersen, Hans Eklund. Structural basis for feedback inhibition of the deoxyribonucleoside salvage pathway: studies of the Drosophila deoxyribonucleoside kinase. Biochemistry. 2003-05-20, 42 (19): 5706–5712 [2019-05-26]. ISSN 0006-2960. PMID 12741827. doi:10.1021/bi0340043. 
  25. ^ P. H. Fischer, A. W. Phillips. Antagonism of feedback inhibition. Stimulation of the phosphorylation of thymidine and 5-iodo-2'-deoxyuridine by 5-iodo-5'-amino-2',5'-dideoxyuridine. Molecular Pharmacology. 1984-5, 25 (3): 446–451 [2019-05-26]. ISSN 0026-895X. PMID 6727866. 
  26. ^ P. H. Fischer, M. A. Vazquez-Padua, C. A. Reznikoff. Perturbation of thymidine kinase regulation: a novel chemotherapeutic approach. Advances in Enzyme Regulation. 1986, 25: 21–34 [2019-05-26]. ISSN 0065-2571. PMID 3812083. 
  27. ^ P. H. Fischer, M. A. Vazquez-Padua, C. A. Reznikoff, W. J. Ratschan. Preferential stimulation of iododeoxyuridine phosphorylation by 5'-aminothymidine in human bladder cancer cells in vitro. Cancer Research. 1986-9, 46 (9): 4522–4526 [2019-05-26]. ISSN 0008-5472. PMID 3731105. 
  28. ^ P. H. Fischer, T. T. Fang, T. S. Lin, A. Hampton, J. Bruggink. Structure-activity analysis of antagonism of the feedback inhibition of thymidine kinase. Biochemical Pharmacology. 1988-04-01, 37 (7): 1293–1298 [2019-05-26]. ISSN 0006-2952. PMID 3355601. 
  29. ^ M. A. Vazquez-Padua, K. Kunugi, P. H. Fischer. Enzyme regulatory site-directed drugs: study of the interactions of 5'-amino-2', 5'-dideoxythymidine (5'-AdThd) and thymidine triphosphate with thymidine kinase and the relationship to the stimulation of thymidine uptake by 5'-AdThd in 647V cells. Molecular Pharmacology. 1989-1, 35 (1): 98–104 [2019-05-26]. ISSN 0026-895X. PMID 2536472. 
  30. ^ M. A. Vazquez-Padua, P. H. Fischer, B. J. Christian, C. A. Reznikoff. Basis for the differential modulation of the uptake of 5-iododeoxyuridine by 5'-aminothymidine among various cell types. Cancer Research. 1989-05-01, 49 (9): 2415–2421 [2019-05-26]. ISSN 0008-5472. PMID 2706629. (原始げんし内容ないようそん于2016-10-01). 
  31. ^ M. A. Vázquez-Padua. Modulation of thymidine kinase activity: a biochemical strategy to enhance the activation of antineoplastic drugs. Puerto Rico Health Sciences Journal. 1994-3, 13 (1): 19–23 [2019-05-26]. ISSN 0738-0658. PMID 8016290. 
  32. ^ McKnight SL. The nucleotide sequence and transcript map of the herpes simplex virus thymidine kinase gene. Nucleic Acids Res. December 1980, 8 (24): 5949–64. PMC 328064可免费查阅. PMID 6258156. doi:10.1093/nar/8.24.5949. 
  33. ^ Halliburton IW, Morse LS, Roizman B, Quinn KE. Mapping of the thymidine kinase genes of type 1 and type 2 herpes simplex viruses using intertypic recombinants. J. Gen. Virol. August 1980, 49 (2): 235–53. PMID 6255066. doi:10.1099/0022-1317-49-2-235. 
  34. ^ McDougall JK, Masse TH, Galloway DA. Location and cloning of the herpes simplex virus type 2 thymidine kinase gene. J. Virol. March 1980, 33 (3): 1221–4 [2012-03-01]. PMC 288658可免费查阅. PMID 6245273. (原始げんし内容ないようそん于2011-08-07). 
  35. ^ Kit S, Kit M, Qavi H, Trkula D, Otsuka H. Nucleotide sequence of the herpes simplex virus type 2 (HSV-2) thymidine kinase gene and predicted amino acid sequence of thymidine kinase polypeptide and its comparison with the HSV-1 thymidine kinase gene. Biochim. Biophys. Acta. November 1983, 741 (2): 158–70. PMID 6317035. doi:10.1016/0167-4781(83)90056-8. 
  36. ^ Sawyer MH, Ostrove JM, Felser JM, Straus SE. Mapping of the varicella zoster virus deoxypyrimidine kinase gene and preliminary identification of its transcript. Virology. February 1986, 149 (1): 1–9. PMID 3004022. doi:10.1016/0042-6822(86)90081-4. 
  37. ^ Littler E, Zeuthen J, McBride AA, Trøst Sørensen E, Powell KL, Walsh-Arrand JE, Arrand JR. Identification of an Epstein-Barr virus-coded thymidine kinase. EMBO J. August 1986, 5 (8): 1959–66. PMC 1167064可免费查阅. PMID 3019675. 
  38. ^ Kit S, Dubbs DR. Acquisition of thymidine kinase activity by herpes simplex-infected mouse fibroblast cells. Biochem. Biophys. Res. Commun. April 1963, 11: 55–9. PMID 14033128. doi:10.1016/0006-291X(63)90027-5. 
  39. ^ Schlosser CA, Steglich C, deWet JR, Scheffler IE. Cell cycle-dependent regulation of thymidine kinase activity introduced into mouse LMTK- cells by DNA and chromatin-mediated gene transfer. Proc. Natl. Acad. Sci. U.S.A. February 1981, 78 (2): 1119–23. PMC 319958可免费查阅. PMID 6940130. doi:10.1073/pnas.78.2.1119. 
  40. ^ Coppock DL, Pardee AB. Control of thymidine kinase mRNA during the cell cycle. Mol. Cell. Biol. August 1987, 7 (8): 2925–32 [2012-03-01]. PMC 367911可免费查阅. PMID 3670299. (原始げんし内容ないようそん于2011-09-27). 
  41. ^ Stewart CJ, Ito M, Conrad SE. Evidence for transcriptional and post-transcriptional control of the cellular thymidine kinase gene. Mol. Cell. Biol. March 1987, 7 (3): 1156–63 [2012-03-01]. PMC 365188可免费查阅. PMID 3561412. (原始げんし内容ないようそん于2011-09-27). 
  42. ^ Piper AA, Tattersall MH, Fox RM. The activities of thymidine metabolising enzymes during the cell cycle of a human lymphocyte cell line LAZ-007 synchronised by centrifugal elutriation. Biochim. Biophys. Acta. December 1980, 633 (3): 400–9. PMID 6260157. 
  43. ^ Pelka-Fleischer R, Ruppelt W, Wilmanns W, Sauer H, Schalhorn A. Relation between cell cycle stage and the activity of DNA-synthesizing enzymes in cultured human lymphoblasts: investigations on cell fractions enriched according to cell cycle stages by way of centrifugal elutriation. Leukemia. March 1987, 1 (3): 182–7. PMID 3669741. 
  44. ^ Sherley JL, Kelly TJ. Regulation of human thymidine kinase during the cell cycle. J. Biol. Chem. June 1988, 263 (17): 8350–8 [2012-03-01]. PMID 3372530. (原始げんし内容ないようそん于2005-01-26). 
  45. ^ Gross MK, Kainz MS, Merrill GF. The chicken thymidine kinase gene is transcriptionally repressed during terminal differentiation: the associated decline in TK mRNA cannot account fully for the disappearance of TK enzyme activity. Dev. Biol. August 1987, 122 (2): 439–51. PMID 3596017. doi:10.1016/0012-1606(87)90308-3. 
  46. ^ Kauffman MG, Kelly TJ. Cell cycle regulation of thymidine kinase: residues near the carboxyl terminus are essential for the specific degradation of the enzyme at mitosis. Mol. Cell. Biol. May 1991, 11 (5): 2538–46 [2012-03-01]. PMC 360023可免费查阅. PMID 1708095. (原始げんし内容ないようそん于2011-09-27). 
  47. ^ Sutterluety H, Bartl S, Karlseder J, Wintersberger E, Seiser C. Carboxy-terminal residues of mouse thymidine kinase are essential for rapid degradation in quiescent cells. J. Mol. Biol. June 1996, 259 (3): 383–92. PMID 8676376. doi:10.1006/jmbi.1996.0327. 
  48. ^ Johnson HA, Rubini JR, Cronkite EP, Bond VP. Labeling of human tumor cells in vivo by tritiated thymidine. Lab. Invest. 1960, 9: 460–5. PMID 14407455. 
  49. ^ Barthel H; Cleij MC; Collingridge DR; et al. 3'-deoxy-3'-[18F]fluorothymidine as a new marker for monitoring tumor response to antiproliferative therapy in vivo with positron emission tomography. Cancer Res. July 2003, 63 (13): 3791–8. PMID 12839975. 
  50. ^ Chao KS. Functional imaging for early prediction of response to chemoradiotherapy: 3'-deoxy-3'-18F-fluorothymidine positron emission tomography--a clinical application model of esophageal cancer. Semin. Oncol. December 2006, 33 (6 Suppl 11): S59–63. PMID 17178290. doi:10.1053/j.seminoncol.2006.10.011. 
  51. ^ Salskov A, Tammisetti VS, Grierson J, Vesselle H. FLT: measuring tumor cell proliferation in vivo with positron emission tomography and 3'-deoxy-3'-[18F]fluorothymidine. Semin Nucl Med. November 2007, 37 (6): 429–39. PMID 17920350. doi:10.1053/j.semnuclmed.2007.08.001. 
  52. ^ de Langen AJ; Klabbers B; Lubberink M; et al. Reproducibility of quantitative (18)F-3'-deoxy-3'-fluorothymidine measurements using positron emission tomography. Eur. J. Nucl. Med. Mol. Imaging. October 2008, 36 (3): 389–95. PMID 18931838. doi:10.1007/s00259-008-0960-5. 
  53. ^ Shields AF; Lawhorn-Crews JM; Briston DA; et al. Analysis and reproducibility of 3'-Deoxy-3'-[18F]fluorothymidine positron emission tomography imaging in patients with non-small cell lung cancer. Clin. Cancer Res. July 2008, 14 (14): 4463–8. PMID 18628460. doi:10.1158/1078-0432.CCR-07-5243. 
  54. ^ Methotrexate - Compound Summary. [2012-03-01]. (原始げんし内容ないようそん于2014-03-10). 
  55. ^ Aminopterin - Compound Summary. [2012-03-01]. (原始げんし内容ないようそん于2014-03-10). 
  56. ^ Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. August 1975, 256 (5517): 495–7. Bibcode:1975Natur.256..495K. PMID 1172191. doi:10.1038/256495a0. 
  57. ^ Köhler G, Howe SC, Milstein C. Fusion between immunoglobulin-secreting and nonsecreting myeloma cell lines. Eur. J. Immunol. April 1976, 6 (4): 292–5. PMID 825374. doi:10.1002/eji.1830060411. 
  58. ^ Köhler G, Milstein C. Derivation of specific antibody-producing tissue culture and tumor lines by cell fusion. Eur. J. Immunol. July 1976, 6 (7): 511–9. PMID 825377. doi:10.1002/eji.1830060713. 
  59. ^ Köhler G, Pearson T, Milstein C. Fusion of T and B cells. Somatic Cell Genet. May 1977, 3 (3): 303–12. PMID 305123. doi:10.1007/BF01538748. 
  60. ^ Milstein C, Adetugbo K, Cowan NJ, Kohler G, Secher DS. Expression of antibody genes in tissue culture: structural mutants and hybrid cells. Natl Cancer Inst Monogr. May 1978, (48): 321–30. PMID 107455. 
  61. ^ 引用いんよう错误:ぼつゆう为名为pmid4223355てき参考さんこう文献ぶんけん提供ていきょう内容ないよう
  62. ^ 引用いんよう错误:ぼつゆう为名为pmid15611477てき参考さんこう文献ぶんけん提供ていきょう内容ないよう
  63. ^ Karlström AR, Neumüller M, Gronowitz JS, Källander CF. Molecular forms in human serum of enzymes synthesizing DNA precursors and DNA. Mol. Cell. Biochem. January 1990, 92 (1): 23–35. PMID 2155379. doi:10.1007/BF00220716. 
  64. ^ りゅうしげるきくしゅうぎわとおひとし。TK1——一種新的腫瘤生長相關標誌物的應用新進展。《中國ちゅうごく藥理やくりがくあずかどく理學りがく雜誌ざっし》2010ねん12月。
  65. ^ Ellims PH, Van der Weyden MB, Medley G. Thymidine kinase isoenzymes in human malignant lymphoma. Cancer Res. February 1981, 41 (2): 691–5. PMID 7448815. 
  66. ^ Hagberg H, Glimelius B, Gronowitz JS, Killander A, Källander CFR, Schröder T. Biochemical markers in non-Hodgkin's lymphoma stages III and IV and prognosis: a multivariate analysis. Scand J Haematol. July 1984, 33 (1): 59–67. PMID 6379852. doi:10.1111/j.1600-0609.1984.tb02211.x. 
  67. ^ Gronowitz JS, Hagberg H, Källander CFR, Simonsson B. The use of serum deoxythymidine kinase as a prognostic marker, and in the monitoring of patients with non-Hodgkin's lymphoma. Br. J. Cancer. April 1983, 47 (4): 487–95. PMC 2011337可免费查阅. PMID 6849793. doi:10.1038/bjc.1983.78. 
  68. ^ Hallek M, Wanders L, Strohmeyer S, Emmerich B. Thymidine kinase: a tumor marker with prognostic value for non-Hodgkin's lymphoma and a broad range of potential clinical applications. Ann. Hematol. July 1992, 65 (1): 1–5. PMID 1643153. doi:10.1007/BF01715117. 
  69. ^ Bogni A, Cortinois A, Grasselli G; et al. Thymidine kinase (TK) activity as a prognostic parameter of survival in lymphoma patients. J. Biol. Regul. Homeost. Agents. 1994, 8 (4): 121–5. PMID 7660854. 
  70. ^ Rehn S, Gronowitz JS, Källander C, Sundström C, Glimelius B. Deoxythymidine kinase in the tumour cells and serum of patients with non-Hodgkin lymphomas. Br. J. Cancer. May 1995, 71 (5): 1099–105. PMC 2033808可免费查阅. PMID 7734308. doi:10.1038/bjc.1995.213. 
  71. ^ Suki S, Swan F, Tucker S; et al. Risk classification for large cell lymphoma using lactate dehydrogenase, beta-2 microglobulin, and thymidine kinase. Leuk. Lymphoma. June 1995, 18 (1–2): 87–92. PMID 8580834. doi:10.3109/10428199509064927. 
  72. ^ Hallek M, Wanders L, Ostwald M; et al. Serum beta(2)-microglobulin and serum thymidine kinase are independent predictors of progression-free survival in chronic lymphocytic leukemia and immunocytoma. Leuk. Lymphoma. August 1996, 22 (5–6): 439–47. PMID 8882957. doi:10.3109/10428199609054782. 
  73. ^ Zhu-Lin Pan, Xing-Ying Ji, Yan-Min Shi, et al.(2010). " Serum thymidine kinase 1 concentration as a prognostic factor".J Cancer Res Clin Oncol.136:1193-1199.
  74. ^ Källander CFR, Simonsson B, Gronowitz JS, Nilsson K. Serum deoxythymidine kinase correlates with peripheral lymphocyte thymidine uptake in chronic lymphocytic leukemia. Eur. J. Haematol. April 1987, 38 (4): 331–7. PMID 3609253. doi:10.1111/j.1600-0609.1987.tb00007.x. 
  75. ^ Källander CFR, Simonsson B, Hagberg H, Gronowitz JS. Serum deoxythymidine kinase gives prognostic information in chronic lymphocytic leukemia. Cancer. December 1984, 54 (11): 2450–5. PMID 6498737. doi:10.1002/1097-0142(19841201)54:11<2450::AID-CNCR2820541123>3.0.CO;2-R. 
  76. ^ A. Rivkina, G. Vitols, M. Murovska, S. Lejniece. Identifying the stage of new CLL patients using TK, ZAP-70, CD38 levels. Experimental Oncology. 2011-6, 33 (2): 99–103 [2019-05-26]. ISSN 1812-9269. PMID 21716207. (原始げんし内容ないようそん于2019-09-05). 
  77. ^ Simonsson B, Källander CFR, Brenning G, Killander A, Gronowitz JS, Bergström R. Biochemical markers in multiple myeloma: a multivariate analysis. Br. J. Haematol. May 1988, 69 (1): 47–53. PMID 3289607. doi:10.1111/j.1365-2141.1988.tb07601.x. 
  78. ^ Simonsson B, Källander CFR, Brenning G, Killander A, Ahre A, Gronowitz JS. Evaluation of serum deoxythymidine kinase as a marker in multiple myeloma. Br. J. Haematol. October 1985, 61 (2): 215–24. PMID 4041368. doi:10.1111/j.1365-2141.1985.tb02820.x. 
  79. ^ Yan Chen, MinGang Ying, YanSong Chen, et al. (2010). 「Serum thymidine kinase 1 correlates to clinical stages and clinical reactions and monitors the outcome of therapy of 1,247 cancer patients in routine clinical settings」. Int J Clin Oncol.
  80. ^ Zhishan Li, Yinghong Wang, Jie He, Jie Ma, et al. (March 2010). 「Serological thymidine kinase 1 is a prognostic factor in oesophageal, cardial and lung carcinomas」. European Journal of Cancer Prevention 19:313-318.
  81. ^ Qimin He, PingGN Zhang, Li Zou, et al. (May 2005). 「Concentration of thymidine kinase 1 in serum(S-TK1) is a more sensitive proliferation marker in human solid tumors than its activity". Oncology Reports 14: 1013-1019.
  82. ^ Zhenxin Wang, Bin Zhang, Bin Ni, Jin Zang. (September 2011). 「Value of serum thymidine kinase 1 in evaluating the efficacy of malignant tumor treatment」. Jiangsu Med J, September 2011, Vol37, No.18:2174-2175.
  83. ^ Larson A, Fritjofsson A, Norlén BJ, Gronowitz JS, Ronquist G. Prostate specific acid phosphatase versus five other possible tumour markers: a comparative study in men with prostatic carcinoma. Scand. J. Clin. Lab. Invest. Suppl. 1985, 179: 81–8. PMID 2417306. 
  84. ^ Letocha H, Eklöv S, Gronowitz S, Norlén BJ, Nilsson S. Deoxythymidine kinase in the staging of prostatic adenocarcinoma. Prostate. July 1996, 29 (1): 15–9. PMID 8685050. doi:10.1002/(SICI)1097-0045(199607)29:1<15::AID-PROS2>3.0.CO;2-H. 
  85. ^ Lewenhaupt A, Ekman P, Eneroth P, Nilsson B. Tumour markers as prognostic aids in prostatic carcinoma. Br J Urol. August 1990, 66 (2): 182–7. PMID 1697204. doi:10.1111/j.1464-410X.1990.tb14900.x. 
  86. ^ Ekman P, Lewenhaupt A. Serum tumour markers in human prostatic carcinoma. The value of a marker panel for prognostic information. Acta Oncol. 1991, 30 (2): 173–5. PMID 2029401. doi:10.3109/02841869109092345. 
  87. ^ Gronowitz JS, Bergström R, Nôu E; et al. Clinical and serologic markers of stage and prognosis in small cell lung cancer. A multivariate analysis. Cancer. August 1990, 66 (4): 722–32. PMID 2167141. doi:10.1002/1097-0142(19900815)66:4<722::AID-CNCR2820660421>3.0.CO;2-J. 
  88. ^ Gronowitz JS, Steinholtz L, Källander CF, Hagberg H, Bergh J. Serum deoxythymidine kinase in small cell carcinoma of the lung. Relation to clinical features, prognosis, and other biochemical markers. Cancer. July 1986, 58 (1): 111–8. PMID 3011236. doi:10.1002/1097-0142(19860701)58:1<111::AID-CNCR2820580120>3.0.CO;2-K. 
  89. ^ H.X.Li, S Zhang, D.S Lei, X.Q Wang, et al. (August 2005). 「Serum thymidine kinase 1 is a prognostic and monitoring factor in patients with non-small cell lung cancer」. Oncology Reports 13: 145-149.
  90. ^ Benjamin Nisman, Tanir Allweis, Luna Kaduri, Bella Maly, Simon Gronowitz, Tamar Hamburger, Tamar Peretz. Serum thymidine kinase 1 activity in breast cancer. Cancer Biomarkers: Section A of Disease Markers. 2010, 7 (2): 65–72 [2019-05-26]. ISSN 1875-8592. PMID 21178264. doi:10.3233/CBM-2010-0148. (原始げんし内容ないようそん于2019-09-05). 
  91. ^ Q. He, L. Zou, P.A Zhang, et al. (2000) 「The clinical significance of thymidine kinase 1 measurement in serum of breast cancer patients using anti-TK1 antibody」. J.Biol.Marker, 15:139-146
  92. ^ Qimin He, Tommy Fornander, Hemming Johansson, et al. (2006) 「Thymidine kinase 1 in serum predicts increased risk of distant or loco-regional recurrence following surgery in patients with early breast cancer」. Anticancer Research 26: 4753-4760.
  93. ^ L. Zou, P.G Zhang, S. Zou, et al.(2002) 「The half-life of thymidine kinase 1 in serum measured by ECL dot blot: a potential marker for monitoring the response to surgery of patients with gastric cancer」. The international Journal of biological Markers, Vol. 17 No. 2:135-140.
  94. ^ Benjamin Nisman, Vladimir Yutkin, Hovav Nechushtan, Ofer N. Gofrit, Tamar Peretz, Simon Gronowitz, Dov Pode. Circulating tumor M2 pyruvate kinase and thymidine kinase 1 are potential predictors for disease recurrence in renal cell carcinoma after nephrectomy. Urology. 2010-8, 76 (2): 513.e1–6 [2019-05-26]. ISSN 1527-9995. PMID 20573390. doi:10.1016/j.urology.2010.04.034. (原始げんし内容ないようそん于2019-09-05). 
  95. ^ Jie Zhang, Quanan Jia, Shan Zou, et al. (August 2006). 「Thymidine kinase 1: A proliferation marker of determining prognosis and monitoring the surgical outcome of primary bladder carcinoma patients」. Oncology Reports 15:455-461.
  96. ^ P. H. Ellims, R. J. Hayman, M. B. Van der Weyden. Expression of fetal thymidine kinase in human cobalamin or folate deficient lymphocytes. Biochemical and Biophysical Research Communications. 1979-07-12, 89 (1): 103–107 [2019-05-26]. ISSN 0006-291X. PMID 475797. 
  97. ^ 97.0 97.1 M. Neumuller, C. F. Källander, J. S. Gronowitz. Detection and characteristics of DNA polymerase activity in serum from patients with malignant, viral, or B12-deficiency disease. Enzyme. 1989, 41 (1): 6–16 [2019-05-26]. ISSN 0013-9432. PMID 2543552. 
  98. ^ G. Tufveson, T. H. Tötterman, C. F. Källander, A. Hagström, J. S. Gronowitz. Serum thymidine-kinase and cytomegalovirus-specific antibodies after renal transplantation. Transplantation Proceedings. 1988-6, 20 (3): 405–407 [2019-05-26]. ISSN 0041-1345. PMID 2837850. 
  99. ^ C. F. Källander, J. S. Gronowitz, E. Olding-Stenkvist. Rapid diagnosis of varicella-zoster virus infection by detection of viral deoxythymidine kinase in serum and vesicle fluid. Journal of Clinical Microbiology. 1983-2, 17 (2): 280–287 [2019-05-26]. ISSN 0095-1137. PMC 272623可免费查阅. PMID 6339548. 
  100. ^ Zhishan Li, Yinghong Wang, Jie Ma, et al. (2010). 「Transient increase in serum thymidine kinase 1 within one week after surgery of patients with carcinoma」. Anticancer Research 30: 1295-1300.
  101. ^ ZhiHeng Chen, Hui Zhou, ShengLan Li, et al. (2008). 「Serological Thymidine Kinase 1 (STK1) indicates an elevated risk for the development of malignant tumors」. Anticancer Research 28:3897-3908.
  102. ^ Shouqing Huang, Jianzh Lin, Na Guo, et al. (2011). 「Elevated serum thymidine kinase 1 predicts risk of pre/early cancerous progression」. Asian Pacific J Cancer Prev, 12, 497-505.
  103. ^ Lin TS, Neenan JP, Cheng YC, Prusoff WH. Synthesis and antiviral activity of 5- and 5'-substituted thymidine analogs. J. Med. Chem. April 1976, 19 (4): 495–8. PMID 177781. doi:10.1021/jm00226a009. 
  104. ^ Helgstrand E, Oberg B. Enzymatic targets in virus chemotherapy. Antibiot Chemother. 1980, 27: 22–69. PMID 6996606. 
  105. ^ Shannon WM, Schabel FM. Antiviral agents as adjuncts in cancer chemotherapy. Pharmacol. Ther. 1980, 11 (2): 263–390. PMID 7001501. doi:10.1016/0163-7258(80)90034-0. 
  106. ^ Hirsch MS. Chemotherapy of human immunodeficiency virus infections: current practice and future prospects. J. Infect. Dis. May 1990, 161 (5): 845–57. PMID 1691243. doi:10.1093/infdis/161.5.845. 
  107. ^ Shiau GT, Schinazi RF, Chen MS, Prusoff WH. Synthesis and biological activities of 5-(hydroxymethyl, azidomethyl, or aminomethyl)-2'-deoxyuridine and related 5'-substituted analogues. J. Med. Chem. February 1980, 23 (2): 127–33. PMID 6244411. doi:10.1021/jm00176a005. 
  108. ^ Mitsuya H, Weinhold KJ, Furman PA; et al. 3'-Azido-3'-deoxythymidine (BW A509U): an antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type III/lymphadenopathy-associated virus in vitro. Proc. Natl. Acad. Sci. U.S.A. October 1985, 82 (20): 7096–100. PMC 391317可免费查阅. PMID 2413459. doi:10.1073/pnas.82.20.7096. 
  109. ^ Baba M, Pauwels R, Herdewijn P, De Clercq E, Desmyter J, Vandeputte M. Both 2',3'-dideoxythymidine and its 2',3'-unsaturated derivative (2',3'-dideoxythymidinene) are potent and selective inhibitors of human immunodeficiency virus replication in vitro. Biochem. Biophys. Res. Commun. January 1987, 142 (1): 128–34 [2012-03-13]. PMID 3028398. doi:10.1016/0006-291X(87)90460-8. (原始げんし内容ないようそん于2020-05-29). 
  110. ^ Hamamoto Y, Nakashima H, Matsui T, Matsuda A, Ueda T, Yamamoto N. Inhibitory effect of 2',3'-didehydro-2',3'-dideoxynucleosides on infectivity, cytopathic effects, and replication of human immunodeficiency virus. Antimicrob. Agents Chemother. June 1987, 31 (6): 907–10. PMC 284209可免费查阅. PMID 3039911. 
  111. ^ 111.0 111.1 Ohrvik A, Lindh M, Einarsson R, Grassi J, Eriksson S. Sensitive nonradiometric method for determining thymidine kinase 1 activity. Clin. Chem. September 2004, 50 (9): 1597–606. PMID 15247154. doi:10.1373/clinchem.2003.030379. 
  112. ^ Prusoff WH. Synthesis and biological activities of iododeoxyuridine, an analog of thymidine. Biochim. Biophys. Acta. March 1959, 32 (1): 295–6. PMID 13628760. doi:10.1016/0006-3002(59)90597-9. 
  113. ^ Morgenroth A, Deisenhofer S, Glatting G; et al. Preferential Tumor Targeting and Selective Tumor Cell Cytotoxicity of 5-[131/125I]Iodo-4'-Thio-2'-Deoxyuridine. Clin. Cancer Res. November 2008, 14 (22): 7311–9. PMID 19010846. doi:10.1158/1078-0432.CCR-08-0907. 
  114. ^ Graciela Andrei, Robert Snoeck. Emerging drugs for varicella-zoster virus infections. Expert Opinion on Emerging Drugs. 2011-9, 16 (3): 507–535 [2019-05-26]. ISSN 1744-7623. PMID 21699441. doi:10.1517/14728214.2011.591786. (原始げんし内容ないようそん于2011-07-03). 
  115. ^ Johnson VA, Hirsch MS. New developments in antiretroviral drug therapy for human immunodeficiency virus infections. Ganciclover is a 5' monophosphate that does not require thymidine kinase activation and thus expresses higher toxicity to host enzymes due to a decrease in selectivity. AIDS Clin Rev. 1990: 235–72. PMID 1707295. 
  116. ^ Mar EC, Chiou JF, Cheng YC, Huang ES. Inhibition of cellular DNA polymerase alpha and human cytomegalovirus-induced DNA polymerase by the triphosphates of 9-(2-hydroxyethoxymethyl)guanine and 9-(1,3-dihydroxy-2-propoxymethyl)guanine. J. Virol. March 1985, 53 (3): 776–80. PMC 254706可免费查阅. PMID 2983088. 
  117. ^ Black ME, Hruby DE. Quaternary structure of vaccinia virus thymidine kinase. Biochem. Biophys. Res. Commun. June 1990, 169 (3): 1080–6 [2012-03-13]. PMID 2114104. doi:10.1016/0006-291X(90)92005-K. (原始げんし内容ないようそん于2015-09-24). 
  118. ^ Nicholas TW, Read SB, Burrows FJ, Kruse CA. Suicide gene therapy with Herpes simplex virus thymidine kinase and ganciclovir is enhanced with connexins to improve gap junctions and bystander effects. Histol. Histopathol. April 2003, 18 (2): 495–507 [2012-03-13]. PMID 12647801. (原始げんし内容ないようそん于2020-07-23). 
  119. ^ Ellen Preuss, Alexander Muik, Kristoffer Weber, Jürgen Otte, Dorothee von Laer, Boris Fehse. Cancer suicide gene therapy with TK.007: superior killing efficiency and bystander effect. Journal of Molecular Medicine (Berlin, Germany). 2011-11, 89 (11): 1113–1124 [2019-05-26]. ISSN 1432-1440. PMID 21698427. doi:10.1007/s00109-011-0777-8. (原始げんし内容ないようそん于2019-01-06). 
  120. ^ Hart IR. Tissue specific promoters in targeting systemically delivered gene therapy. Semin. Oncol. February 1996, 23 (1): 154–8. PMID 8607025. 
  121. ^ Wills KN, Huang WM, Harris MP, Machemer T, Maneval DC, Gregory RJ. Gene therapy for hepatocellular carcinoma: chemosensitivity conferred by adenovirus-mediated transfer of the HSV-1 thymidine kinase gene. Cancer Gene Ther. September 1995, 2 (3): 191–7. PMID 8528962. 
  122. ^ Ido A, Nakata K, Kato Y; et al. Gene therapy for hepatoma cells using a retrovirus vector carrying herpes simplex virus thymidine kinase gene under the control of human alpha-fetoprotein gene promoter. Cancer Res. July 1995, 55 (14): 3105–9. PMID 7541712. 
  123. ^ Kanai F, Shiratori Y, Yoshida Y; et al. Gene therapy for alpha-fetoprotein-producing human hepatoma cells by adenovirus-mediated transfer of the herpes simplex virus thymidine kinase gene. Hepatology. June 1996, 23 (6): 1359–68. PMID 8675152. doi:10.1002/hep.510230611. 
  124. ^ Garver RI, Goldsmith KT, Rodu B, Hu PC, Sorscher EJ, Curiel DT. Strategy for achieving selective killing of carcinomas. Gene Ther. January 1994, 1 (1): 46–50. PMID 7584059. 
  125. ^ Hart IR. Transcriptionally targeted gene therapy. Curr. Top. Microbiol. Immunol. 1996, 213 (3): 19–25. PMID 8815006. 
  126. ^ {{cite journal |author=Byun Y, Thirumamagal BT, Yang W, Eriksson S, Barth RF, Tjarks W |title=Preparation and biological evaluation of 10B-enriched 3-[5-{2-(2,3-dihydroxyprop-1-yl)-o-carboran-1-yl}pentan-1-yl]thymidine (N5-2OH), a new boron delivery agent for boron neutron capture therapy of brain tumors |journal=J. Med. Chem. |volume=49 |issue=18 |pages=5513–23 |pmid=16942024 |doi=10.1021/jm060413w |url=|date=September 2006}}
  127. ^ Thirumamagal BT, Johnsamuel J, Cosquer GY; et al. Boronated thymidine analogues for boron neutron capture therapy. Nucleosides Nucleotides Nucleic Acids. 2006, 25 (8): 861–6. PMID 16901817. doi:10.1080/15257770600793844. 
  128. ^ Narayanasamy S, Thirumamagal BT, Johnsamuel J; et al. Hydrophilically enhanced 3-carboranyl thymidine analogues (3CTAs) for boron neutron capture therapy (BNCT) of cancer. Bioorg. Med. Chem. October 2006, 14 (20): 6886–99. PMID 16831554. doi:10.1016/j.bmc.2006.06.039. 
  129. ^ Byun Y, Narayanasamy S, Johnsamuel J; et al. 3-Carboranyl thymidine analogues (3CTAs) and other boronated nucleosides for boron neutron capture therapy. Anticancer Agents Med Chem. March 2006, 6 (2): 127–44. PMID 16529536. doi:10.2174/187152006776119171. [永久えいきゅう失效しっこう連結れんけつ]
  130. ^ Byun Y, Yan J, Al-Madhoun AS; et al. Synthesis and biological evaluation of neutral and zwitterionic 3-carboranyl thymidine analogues for boron neutron capture therapy. J. Med. Chem. February 2005, 48 (4): 1188–98. PMID 15715485. doi:10.1021/jm0491896. 
  131. ^ Barth RF, Yang W, Al-Madhoun AS; et al. Boron-containing nucleosides as potential delivery agents for neutron capture therapy of brain tumors. Cancer Res. September 2004, 64 (17): 6287–95. PMID 15342417. doi:10.1158/0008-5472.CAN-04-0437. 
  132. ^ Al-Madhoun AS, Johnsamuel J, Barth RF, Tjarks W, Eriksson S. Evaluation of human thymidine kinase 1 substrates as new candidates for boron neutron capture therapy. Cancer Res. September 2004, 64 (17): 6280–6. PMID 15342416. doi:10.1158/0008-5472.CAN-04-0197. 
  133. ^ Johnsamuel J, Lakhi N, Al-Madhoun AS; et al. Synthesis of ethyleneoxide modified 3-carboranyl thymidine analogues and evaluation of their biochemical, physicochemical, and structural properties. Bioorg. Med. Chem. September 2004, 12 (18): 4769–81. PMID 15336255. doi:10.1016/j.bmc.2004.07.032. 
  134. ^ Byun Y, Yan J, Al-Madhoun AS; et al. The synthesis and biochemical evaluation of thymidine analogues substituted with nido carborane at the N-3 position. Appl Radiat Isot. November 2004, 61 (5): 1125–30. PMID 15308203. doi:10.1016/j.apradiso.2004.05.023. 
  135. ^ Yan J, Naeslund C, Al-Madhoun AS; et al. Synthesis and biological evaluation of 3'-carboranyl thymidine analogues. Bioorg. Med. Chem. Lett. August 2002, 12 (16): 2209–12 [2012-03-13]. PMID 12127539. doi:10.1016/S0960-894X(02)00357-8. (原始げんし内容ないようそん于2018-07-02). 
  136. ^ Barth RF, Yang W, Wu G; et al. Thymidine kinase 1 as a molecular target for boron neutron capture therapy of brain tumors. Proc. Natl. Acad. Sci. U.S.A. November 2008, 105 (45): 17493–7. PMC 2582264可免费查阅. PMID 18981415. doi:10.1073/pnas.0809569105. 
  137. ^ Gronowitz JS, Källander CF. Optimized assay for thymidine kinase and its application to the detection of antibodies against herpes simplex virus type 1- and 2-induced thymidine kinase. Infect. Immun. August 1980, 29 (2): 425–34. PMC 551136可免费查阅. PMID 6260651. 
  138. ^ Gronowitz JS, Källander FR, Diderholm H, Hagberg H, Pettersson U. Application of an in vitro assay for serum thymidine kinase: results on viral disease and malignancies in humans. Int. J. Cancer. January 1984, 33 (1): 5–12. PMID 6693195. doi:10.1002/ijc.2910330103. 
  139. ^ Gronowitz JS, Källander CF. A sensitive assay for detection of deoxythymidine kinase and its application to herpesvirus diagnosis. Curr. Top. Microbiol. Immunol. 1983, 104: 235–45. PMID 6307593. 
  140. ^ 引用いんよう错误:ぼつゆう为名为pmid16140350てき参考さんこう文献ぶんけん提供ていきょう内容ないよう
  141. ^ Gronowitz, JS (24.2.2006) A method and kit for determination of thymidine kinase activity and use thereof. International patent application PCT/SE2006/000246
  142. ^ Chuanjing Wu, Rong-jiang Yang, Ji Zhou, et al. (February 2003). 「Production and characterization of a novel chicken IgY antibody raised against C-terminal peptide from human thymidine kinase 1」. Journal of Immunological Methods 277:157-169.
  143. ^ Romain S, Spyratos F, Guirou O, Deytieux S, Chinot O, Martin PM. Technical evaluation of thymidine kinase assay in cytosols from breast cancers. EORTC Receptor Study Group Report. Eur. J. Cancer. 1994, 30A (14): 2163–5. PMID 7857717. doi:10.1016/0959-8049(94)00376-G. 
  144. ^ Arnér ES, Spasokoukotskaja T, Eriksson S. Selective assays for thymidine kinase 1 and 2 and deoxycytidine kinase and their activities in extracts from human cells and tissues. Biochem. Biophys. Res. Commun. October 1992, 188 (2): 712–8. PMID 1359886. doi:10.1016/0006-291X(92)91114-6. 
  145. ^ Wang L, Eriksson S. 5-Bromovinyl 2'-deoxyuridine phosphorylation by mitochondrial and cytosolic thymidine kinase (TK2 and TK1) and its use in selective measurement of TK2 activity in crude extracts. Nucleosides Nucleotides Nucleic Acids. June 2008, 27 (6): 858–62. PMID 18600552. doi:10.1080/15257770802146510. 
  146. ^ 146.0 146.1 Herzfeld A, Greengard O. Enzyme activities in human fetal and neoplastic tissues. Cancer. November 1980, 46 (9): 2047–54. PMID 6253048. doi:10.1002/1097-0142(19801101)46:9<2047::AID-CNCR2820460924>3.0.CO;2-Q. 
  147. ^ Machovich R, Greengard O. Thymidine kinase in rat tissues during growth and differentiation. Biochim. Biophys. Acta. December 1972, 286 (2): 375–81. PMID 4660462. doi:10.1016/0304-4165(72)90273-5. 
  148. ^ Herzfeld A, Raper SM, Gore I. The ontogeny of thymidine kinase in tissues of man and rat. Pediatr. Res. December 1980, 14 (12): 1304–10. PMID 7208144. doi:10.1203/00006450-198012000-00006. 
  149. ^ Schollenberger S, Taureck D, Wilmanns W. [Enzymes of thymidine and thymidylate metabolism in normal and pathological blood and bone marrow cells] [Enzymes of thymidine and thymidylate metabolism in normal and pathological blood and bone marrow cells]. Blut. November 1972, 25 (5): 318–34. PMID 4508724. doi:10.1007/BF01631814 とく语). 
  150. ^ Nakao K, Fujioka S. Thymidine kinase activity in the human bone marrow from various blood diseases. Life Sci. April 1968, 7 (8): 395–9. PMID 5649653. doi:10.1016/0024-3205(68)90039-8. 
  151. ^ Wickramasinghe SN, Olsen I, Saunders JE. Thymidine kinase activity in human bone marrow cells. Scand J Haematol. September 1975, 15 (2): 139–44. PMID 1059244. doi:10.1111/j.1600-0609.1975.tb01065.x. 
  152. ^ Gordon HL, Bardos TJ, Chmielewicz ZF, Ambrus JL. Comparative study of the thymidine kinase and thymidylate kinase activities and of the feedbach inhibition of thymidine kinase in normal and neoplastic human tissue. Cancer Res. October 1968, 28 (10): 2068–77. PMID 5696936. 
  153. ^ Stafford MA, Jones OW. The presence of "fetal" thymidine kinase in human tumors. Biochim. Biophys. Acta. August 1972, 277 (2): 439–42. PMID 4672678. 
  154. ^ Maehara Y, Nakamura H, Nakane Y; et al. Activities of various enzymes of pyrimidine nucleotide and DNA syntheses in normal and neoplastic human tissues. Gann. April 1982, 73 (2): 289–98. PMID 6288502. 
  155. ^ Persson L, Gronowitz SJ, Källander CF. Thymidine kinase in extracts of human brain tumours. Acta Neurochir (Wien). 1986, 80 (3–4): 123–7. PMID 3012969. doi:10.1007/BF01812286. 
  156. ^ Filanovskaia LI, Togo AV, Shcherbakova EG, Blinov MN. [Thymidine kinase activity in leukocytes from patients with chronic myeloid leukemia at various periods in the disease] [Thymidine kinase activity in leukocytes from patients with chronic myeloid leukemia at various periods in the disease]. Vopr. Med. Khim. 1994, 40 (1): 29–32. PMID 8122406 にわか语). 
  157. ^ Lipkin M. Proliferation and differentiation of normal and neoplastic cells in the colon of man. Cancer. July 1971, 28 (1): 38–40. PMID 5110642. doi:10.1002/1097-0142(197107)28:1<38::AID-CNCR2820280108>3.0.CO;2-W. 
  158. ^ Lipkin M, Deschner E, Troncale F. Cell differentiation and the development of colonic neoplasms. CA Cancer J Clin. 1970, 20 (6): 386–90 [2012-03-13]. PMID 4992499. doi:10.3322/canjclin.20.6.386. (原始げんし内容ないようそん于2016-03-04). 
  159. ^ Weber G, Lui MS, Takeda E, Denton JE. Enzymology of human colon tumors. Life Sci. September 1980, 27 (9): 793–9. PMID 7412505. doi:10.1016/0024-3205(80)90333-1. 
  160. ^ Sagara T, Tsukada K, Iwama T, Mishima Y, Sakamoto S, Okamoto R. [Thymidine kinase isozymes in human colon polyps] [Thymidine kinase isozymes in human colon polyps]. Nippon Gan Chiryo Gakkai Shi. August 1985, 20 (7): 1312–6. PMID 4078430 にち语). 
  161. ^ Sakamoto S, Sagara T, Iwama T, Kawasaki T, Okamoto R. Increased activities of thymidine kinase isozymes in human colon polyp and carcinoma. Carcinogenesis. June 1985, 6 (6): 917–9. PMID 4006080. doi:10.1093/carcin/6.6.917. 
  162. ^ Sakamoto S, Okamoto R. Thymidine kinase activity in familial adenomatous polyposis. Tohoku J. Exp. Med. October 1992, 168 (2): 291–301. PMID 1339104. doi:10.1620/tjem.168.291. (原始げんし内容ないようそん档于2012-12-19). 
  163. ^ Galloux H, Javre JL, Guerin D, Sampérez S, Jouan P. [Prognostic value of fetal thymidine kinase measurements in breast cancer] [Prognostic value of fetal thymidine kinase measurements in breast cancer]. C. R. Acad. Sci. III, Sci. Vie. 1988, 306 (3): 89–92. PMID 3126994 ほう语). 
  164. ^ O'Neill KL, Hoper M, Odling-Smee GW. Can thymidine kinase levels in breast tumors predict disease recurrence?. J. Natl. Cancer Inst. December 1992, 84 (23): 1825–8. PMID 1433372. doi:10.1093/jnci/84.23.1825. 
  165. ^ O'Neill KL, McKelvey VJ, Hoper M; et al. Breast tumour thymidine kinase levels and disease recurrence. Med Lab Sci. December 1992, 49 (4): 244–7. PMID 1339926. 
  166. ^ Romain S, Javre JL, Samperez S; et al. [Prognostic value of thymidine kinase in cancer of the breast] [Prognostic value of thymidine kinase in cancer of the breast]. Bull Cancer. 1990, 77 (10): 973–83. PMID 2249017 ほう语). 
  167. ^ Romain S, Chinot O, Guirou O, Soullière M, Martin PM. Biological heterogeneity of ER-positive breast cancers in the post-menopausal population. Int. J. Cancer. October 1994, 59 (1): 17–9. PMID 7927897. doi:10.1002/ijc.2910590105. 
  168. ^ Sakamoto S, Iwama T, Ebuchi M; et al. Increased activities of thymidine kinase isozymes in human mammary tumours. Br J Surg. April 1986, 73 (4): 272–3. PMID 3697655. doi:10.1002/bjs.1800730409. 
  169. ^ Greengard O, Head JF, Goldberg SL, Kirschner PA. Enzyme pathology and the histologic categorization of human lung tumors: the continuum of quantitative biochemical indices of neoplasticity. Cancer. February 1982, 49 (3): 460–7. PMID 6277448. doi:10.1002/1097-0142(19820201)49:3<460::AID-CNCR2820490312>3.0.CO;2-Y. 
  170. ^ Greengard O, Head JF, Goldberg SL, Kirschner PA. Biochemical measure of the volume doubling time of human pulmonary neoplasms. Cancer. April 1985, 55 (7): 1530–5. PMID 2983858. doi:10.1002/1097-0142(19850401)55:7<1530::AID-CNCR2820550720>3.0.CO;2-V. 
  171. ^ Yusa T, Tamiya N, Yamaguchi Y; et al. [A study of thymidine kinase activity in lung cancer tissue] [A study of thymidine kinase activity in lung cancer tissue]. Nihon Kyobu Shikkan Gakkai Zasshi. March 1994, 32 (3): 211–5. PMID 8189640 にち语). 
  172. ^ Konishi T, Miyama T, Sakamoto S; et al. Activities of thymidylate synthetase and thymidine kinase in gastric cancer. Surg Oncol. June 1992, 1 (3): 215–21. PMID 1341254. doi:10.1016/0960-7404(92)90067-U. 
  173. ^ Look KY, Moore DH, Sutton GP, Prajda N, Abonyi M, Weber G. Increased thymidine kinase and thymidylate synthase activities in human epithelial ovarian carcinoma. Anticancer Res. 1997, 17 (4A): 2353–6. PMID 9252646. 
  174. ^ Greengard O, Head JF, Chahinian AP, Goldberg SL. Enzyme pathology of human mesotheliomas. J. Natl. Cancer Inst. April 1987, 78 (4): 617–22. PMID 2882044. 
  175. ^ Borovanský J, Stríbrná J, Elleder M, Netíková I. Thymidine kinase in malignant melanoma. Melanoma Res. October 1994, 4 (5): 275–9. PMID 7858409. doi:10.1097/00008390-199410000-00001. 
  176. ^ Sakamoto S, Murakami S, Sugawara M, Mishima Y, Okamoto R. Increased activities of thymidylate synthetase and thymidine kinase in human thyroid tumors. Thyroid. 1991, 1 (4): 347–51. PMID 1841732. doi:10.1089/thy.1991.1.347. 
  177. ^ Pikner R, Ludvíkova M, Ryska A; et al. TPS, thymidine kinase, VEGF and endostatin in cytosol of thyroid tissue samples. Anticancer Res. 2005, 25 (3A): 1517–21. PMID 16033053. 
  178. ^ Wilms K, Wilmanns W. [Effects of dauno-rubidomycin and adriamycin on enzymes of DNA synthesis in leukocytes in vivo and in culture] [Effects of dauno-rubidomycin and adriamycin on enzymes of DNA synthesis in leukocytes in vivo and in culture]. Klin. Wochenschr. September 1972, 50 (18): 866–70. PMID 4507472. doi:10.1007/BF01488943 とく语). 
  179. ^ Wilmanns W, Wilms K. DNA synthesis in normal and leucemic cells as related to therapy with cytotoxic drugs. Enzyme. 1972, 13 (1): 90–109. PMID 4507104. 
  180. ^ Zhang HJ, Kennedy BJ, Kiang DT. Thymidine kinase as a predictor of response to chemotherapy in advanced breast cancer. Breast Cancer Res. Treat. 1984, 4 (3): 221–5. PMID 6487823. doi:10.1007/BF01806488. 
  181. ^ Kuroiwa N, Nakayama M, Fukuda T; et al. Specific recognition of cytosolic thymidine kinase in the human lung tumor by monoclonal antibodies raised against recombinant human thymidine kinase. J. Immunol. Methods. July 2001, 253 (1–2): 1–11 [2012-03-13]. PMID 11384664. doi:10.1016/S0022-1759(01)00368-4. (原始げんし内容ないようそん于2018-06-14). 
  182. ^ 182.0 182.1 He Q, Mao Y, Wu J; et al. Cytosolic thymidine kinase is a specific histopathologic tumour marker for breast carcinomas. Int. J. Oncol. October 2004, 25 (4): 945–53. PMID 15375544. 
  183. ^ Mao Y, Wu J, Wang N; et al. A comparative study: immunohistochemical detection of cytosolic thymidine kinase and proliferating cell nuclear antigen in breast cancer. Cancer Invest. 2002, 20 (7–8): 922–31. PMID 12449723. doi:10.1081/CNV-120005905. 
  184. ^ Mao Y, Wu J, Skog S; et al. Expression of cell proliferating genes in patients with non-small cell lung cancer by immunohistochemistry and cDNA profiling. Oncol. Rep. May 2005, 13 (5): 837–46. PMID 15809747. 
  185. ^ Wu J, Mao Y, He L; et al. A new cell proliferating marker: cytosolic thymidine kinase as compared to proliferating cell nuclear antigen in patients with colorectal carcinoma. Anticancer Res. 2000, 20 (6C): 4815–20. PMID 11205225. 
  186. ^ Li HX, Lei DS, Wang XQ, Skog S, He Q. Serum thymidine kinase 1 is a prognostic and monitoring factor in patients with non-small cell lung cancer. Oncol. Rep. January 2005, 13 (1): 145–9. PMID 15583816. 
  187. ^ Stephan Kruck, Joerg Hennenlotter, Ulrich Vogel, David Schilling, Georgios Gakis, Joachim Hevler, Ursula Kuehs, Arnulf Stenzl, Christian Schwentner. Exposed proliferation antigen 210 (XPA-210) in renal cell carcinoma (RCC) and oncocytoma: clinical utility and biological implications. BJU international. 2012-2, 109 (4): 634–638 [2019-05-26]. ISSN 1464-410X. PMID 21711439. doi:10.1111/j.1464-410X.2011.10392.x. (原始げんし内容ないようそん于2016-06-07). 

外部がいぶ連結れんけつ

[编辑]