旅行 推销员问题
问题
甚至纯粹
描述
[编辑]作 为图论问题
[编辑]非 对称和 对称
[编辑]相 关问题
[编辑]- 另一个相关问题是
瓶 颈旅行商 问题[译名请求](bottleneck TSP):求 加 权图中 权重最大 的 边最小 的 哈密尔顿回路 。问题在 运输和物 流 之 外 都 有 相当 广泛的 实际意 义。一个典型的例子是在印刷 电路板 制 造 中 :规划打 孔 机 在 PCB版 上 钻孔的 路 线。在 机 械加工 或 钻孔应用中 ,“城市 ”是 需要 加工 的 部分 或 需要 钻的(不同 大小 )的 孔 ,而“旅行 成本 ”包括 更 换机具 所用 的 时间(单机作 业排序 问题)。
旅行 推销员问题,处理“国家 ”中有 (一个或多个)“城市 ”,而旅行商 需要 在 每 个“国家 ”访问恰好 一座 “城市 ”。其中一种应用是在求解裁切 问题时,想 要 最小 化 刀 具 改 变次数 中 。另一种应用 与 半 导体制 造 业中的 打 孔 有 关,见美国 专利第 7,054,798号 。令 人 惊喜的 是 ,Behzad与 Modarres证明了 广义旅行 商 问题可 以转化 为相同 城市 数量 的 标准旅行 商 问题 ,只 是 要 改 变距离矩 阵。[2]
- 优先顺序
旅行 推销员问题处理 城市 之 间存在 访问次序 的 问题。
旅行 购买者 问题涉 及购买一系列产品的购买者。他 可 以在若干 城市 购买这些产品,但 价格会 有 不同 ,也不是 所有 城市 都 有 售相同 的 商品 。目 标是在 城市 的 子 集中 间找到一 条 路 径 ,使 得 总成本 (旅行 成本 + 购买成本 )最小 ,并且能 够买到所有 需求的 商品 。
整数 线性规划形式
[编辑]单钻头的运动
对于 i = 0, ..., n,
证明
这构
必须证明对每个覆盖所
为了
满足约束。
参 见
[编辑]注 释
[编辑]- ^
参 见已解 出精 确解0.05%范围内 的 TSP世界 巡 游 问题。[1] (页面存 档备份,存 于互联网档案 馆) - ^ Behzad, Arash; Modarres, Mohammad, New Efficient Transformation of the Generalized Traveling Salesman Problem into Traveling Salesman Problem, Proceedings of the 15th International Conference of Systems Engineering (Las Vegas), 2002
- ^ Papadimitriou, C.H.; Steiglitz, K., Combinatorial optimization: algorithms and complexity, Mineola, NY: Dover, 1998 , pp.308-309.
- ^ Tucker, A. W. (1960), "On Directed Graphs and Integer Programs", IBM Mathematical research Project (Princeton University)
- ^ Dantzig, George B. (1963), Linear Programming and Extensions, Princeton, NJ: PrincetonUP, pp. 545–7, ISBN 0-691-08000-3, sixth printing, 1974.
参考 文献
[编辑]- Applegate, D. L.; Bixby, R. M.; Chvátal, V.; Cook, W. J., The Traveling Salesman Problem, 2006, ISBN 0-691-12993-2.
- Arora, Sanjeev, Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems, Journal of the ACM, 1998, 45 (5): 753–782, MR 1668147, doi:10.1145/290179.290180.
- Beardwood, J.; Halton, J.H.; Hammersley, J.M., The Shortest Path Through Many Points, Proceedings of the Cambridge Philosophical Society, 1959, 55: 299–327, doi:10.1017/s0305004100034095.
- Bellman, R., Combinatorial Processes and Dynamic Programming, Bellman, R., Hall, M., Jr. (eds.) (编), Combinatorial Analysis, Proceedings of Symposia in Applied Mathematics 10,, American Mathematical Society: 217–249, 1960.
- Bellman, R., Dynamic Programming Treatment of the Travelling Salesman Problem, J. Assoc. Comput. Mach., 1962, 9: 61–63, doi:10.1145/321105.321111.
- Berman, Piotr; Karpinski, Marek, 8/7-approximation algorithm for (1,2)-TSP, Proc. 17th ACM-SIAM Symposium on Discrete Algorithms (SODA '06): 641–648, 2006, ISBN 0898716055, doi:10.1145/1109557.1109627, Template:ECCC.
- Christofides, N., Worst-case analysis of a new heuristic for the travelling salesman problem, Technical Report 388, Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh, 1976.
- Hassin, R.; Rubinstein, S., Better approximations for max TSP, Information Processing Letters, 2000, 75 (4): 181–186, doi:10.1016/S0020-0190(00)00097-1.
- Held, M.; Karp, R. M., A Dynamic Programming Approach to Sequencing Problems, Journal of the Society for Industrial and Applied Mathematics, 1962, 10 (1): 196–210, doi:10.1137/0110015.
- Kaplan, H.; Lewenstein, L.; Shafrir, N.; Sviridenko, M., Approximation Algorithms for Asymmetric TSP by Decomposing Directed Regular Multigraphs, In Proc. 44th IEEE Symp. on Foundations of Comput. Sci: 56–65, 2004.
- Kosaraju, S. R.; Park, J. K.; Stein, C., Long tours and short superstrings', Proc. 35th Ann. IEEE Symp. on Foundations of Comput. Sci, IEEE Computer Society: 166–177, 1994.
- Orponen, P.; Mannila, H., On approximation preserving reductions: Complete problems and robust measures', Technical Report C-1987–28, Department of Computer Science, University of Helsinki, 1987.
- Padberg, M.; Rinaldi, G., A Branch-and-Cut Algorithm for the Resolution of Large-Scale Symmetric Traveling Salesman Problems, Siam Review, 1991: 60–100, doi:10.1137/1033004.
- Papadimitriou, Christos H., The Euclidean traveling salesman problem is NP-complete, Theoretical Computer Science, 1977, 4 (3): 237–244, MR 0455550, doi:10.1016/0304-3975(77)90012-3.
- Papadimitriou, C. H.; Yannakakis, M., The traveling salesman problem with distances one and two, Math. Oper. Res., 1993, 18: 1–11, doi:10.1287/moor.18.1.1.
- Serdyukov, A. I., An algorithm with an estimate for the traveling salesman problem of the maximum', Upravlyaemye Sistemy, 1984, 25: 80–86.
- Steinerberger, Stefan, New Bounds for the Traveling Salesman Constant, Advances in Applied Probability, 2015, 47.
- Woeginger, G.J., Exact Algorithms for NP-Hard Problems: A Survey, Combinatorial Optimization – Eureka, You Shrink! Lecture notes in computer science, vol. 2570, Springer: 185–207, 2003.
延伸 阅读
[编辑]- Adleman, Leonard, Molecular Computation of Solutions To Combinatorial Problems (PDF), Science, 1994, 266 (5187): 1021–4, Bibcode:1994Sci...266.1021A, PMID 7973651, doi:10.1126/science.7973651, (
原始 内容 (PDF)存 档于2005-02-06) - Arora, S., Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems (PDF), Journal of the ACM, 1998, 45 (5): 753–782 [2015-08-18], doi:10.1145/290179.290180, (
原始 内容 存 档 (PDF)于2020-11-24). - Babin, Gilbert; Deneault, Stéphanie; Laportey, Gilbert, Improvements to the Or-opt Heuristic for the Symmetric Traveling Salesman Problem, Cahiers du GERAD, G-2005-02, Montreal: Group for Research in Decision Analysis, 2005 [2015-08-18], (
原始 内容 存 档于2011-09-19). - Cook, William, In Pursuit of the Travelling Salesman: Mathematics at the Limits of Computation, Princeton University Press, 2011, ISBN 978-0-691-15270-7.
- Cook, William; Espinoza, Daniel; Goycoolea, Marcos, Computing with domino-parity inequalities for the TSP, INFORMS Journal on Computing, 2007, 19 (3): 356–365, doi:10.1287/ijoc.1060.0204.
- Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; Stein, C., 35.2: The traveling-salesman problem, Introduction to Algorithms 2nd, MIT Press and McGraw-Hill: 1027–1033, 2001, ISBN 0-262-03293-7.
- Dantzig, G. B.; Fulkerson, R.; Johnson, S. M., Solution of a large-scale traveling salesman problem, Operations Research, 1954, 2 (4): 393–410, JSTOR 166695, doi:10.1287/opre.2.4.393.
- Garey, M. R.; Johnson, D. S., A2.3: ND22–24, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman: 211–212, 1979, ISBN 0-7167-1045-5.
- Goldberg, D. E., Genetic Algorithms in Search, Optimization & Machine Learning, Reading: Addison-Wesley (New York: Addison-Wesley), 1989, Bibcode:1989gaso.book.....G, ISBN 0-201-15767-5.
- Gutin, G.; Yeo, A.; Zverovich, A., Traveling salesman should not be greedy: domination analysis of greedy-type heuristics for the TSP, Discrete Applied Mathematics, 2002, 117 (1–3): 81–86, doi:10.1016/S0166-218X(01)00195-0.
- Gutin, G.; Punnen, A. P., The Traveling Salesman Problem and Its Variations, Springer, 2006, ISBN 0-387-44459-9.
- Johnson, D. S.; McGeoch, L. A., The Traveling Salesman Problem: A Case Study in Local Optimization, Aarts, E. H. L.; Lenstra, J. K. (编), Local Search in Combinatorial Optimisation, John Wiley and Sons Ltd: 215–310, 1997.
- Lawler, E. L.; Lenstra, J. K.; Rinnooy Kan, A. H. G.; Shmoys, D. B., The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, John Wiley & Sons, 1985, ISBN 0-471-90413-9.
- MacGregor, J. N.; Ormerod, T., Human performance on the traveling salesman problem (PDF), Perception & Psychophysics, 1996, 58 (4): 527–539, doi:10.3758/BF03213088, (
原始 内容 (PDF)存 档于2009年 12月29日 ). - Mitchell, J. S. B., Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems, SIAM Journal on Computing, 1999, 28 (4): 1298–1309 [2015-08-18], doi:10.1137/S0097539796309764, (
原始 内容 存 档于2007-12-22). - Rao, S.; Smith, W., Approximating geometrical graphs via 'spanners' and 'banyans', Proc. 30th Annual ACM Symposium on Theory of Computing: 540–550, 1998.
- Rosenkrantz, Daniel J.; Stearns, Richard E.; Lewis, Philip M., II, An Analysis of Several Heuristics for the Traveling Salesman Problem, SIAM Journal on Computing, 1977, 6 (5): 563–581, doi:10.1137/0206041.
- Vickers, D.; Butavicius, M.; Lee, M.; Medvedev, A., Human performance on visually presented traveling salesman problems, Psychological Research, 2001, 65 (1): 34–45, PMID 11505612, doi:10.1007/s004260000031.
- Walshaw, Chris, A Multilevel Approach to the Travelling Salesman Problem, CMS Press, 2000.
- Walshaw, Chris, A Multilevel Lin-Kernighan-Helsgaun Algorithm for the Travelling Salesman Problem, CMS Press, 2001.
外部 链接
[编辑]- Traveling Salesman Problem (页面
存 档备份,存 于互联网档案 馆) at University of Waterloo - TSPLIB at the University of Heidelberg
- Traveling Salesman Problem (页面
存 档备份,存 于互联网档案 馆) by Jon McLoone at the Wolfram Demonstrations Project - Traveling Salesman movie (on IMDB) (页面
存 档备份,存 于互联网档案 馆) - MAOS-TSP (页面
存 档备份,存 于互联网档案 馆) JAVA TSP Solver