Isotopes of thulium

From Wikipedia, the free encyclopedia
(Redirected from Thulium-171)
Isotopes of thulium (69Tm)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
167Tm synth 9.25 d εいぷしろん 167Er
168Tm synth 93.1 d βべーた+ 168Er
169Tm 100% stable
170Tm synth 128.6 d βべーた 170Yb
171Tm synth 1.92 y βべーた 171Yb
Standard atomic weight Ar°(Tm)

Naturally occurring thulium (69Tm) is composed of one stable isotope, 169Tm (100% natural abundance). Thirty-nine radioisotopes have been characterized, with the most stable being 171Tm with a half-life of 1.92 years, 170Tm with a half-life of 128.6 days, 168Tm with a half-life of 93.1 days, and 167Tm with a half-life of 9.25 days. All of the remaining radioactive isotopes have half-lives that are less than 64 hours, and the majority of these have half-lives that are less than 2 minutes. This element also has 26 meta states, with the most stable being 164mTm (t1/2 5.1 minutes), 160mTm (t1/2 74.5 seconds) and 155mTm (t1/2 45 seconds).

The known isotopes of thulium range from 144Tm to 183Tm. The primary decay mode before the most abundant stable isotope, 169Tm, is electron capture, and the primary mode after is beta emission. The primary decay products before 169Tm are erbium isotopes, and the primary products after are ytterbium isotopes. All isotopes of thulium are either radioactive or, in the case of 169Tm, observationally stable, meaning that 169Tm is predicted to be radioactive but no actual decay has been observed.

List of isotopes[edit]

Nuclide
[n 1]
Z N Isotopic mass (Da)
[n 2][n 3]
Half-life
[n 4]
Decay
mode

[n 5]
Daughter
isotope

[n 6]
Spin and
parity
[n 7][n 4]
Natural abundance (mole fraction)
Excitation energy[n 4] Normal proportion Range of variation
144Tm[4] 69 75 1.9+1.2
−0.5
 μみゅーs
p 143Er (10+)
145Tm 69 76 144.97007(43)# 3.1(3) μみゅーs p 144Er (11/2−)
146Tm 69 77 145.96643(43)# 240(30) ms p 145Er (6−)
βべーた+ (rare) 146Er
146mTm 71(6) keV 72(23) ms p 145Er (10+)
βべーた+ (rare) 146Er
147Tm 69 78 146.96096(32)# 0.58(3) s βべーた+ (85%) 147Er 11/2−
p (15%) 146Er
147mTm 60(5) keV 360(40) μみゅーs 3/2+
148Tm 69 79 147.95784(43)# 0.7(2) s βべーた+ 148Er (10+)
148mTm 0.7 s
149Tm 69 80 148.95272(32)# 0.9(2) s βべーた+ (99.74%) 149Er (11/2−)
βべーた+, p (.26%) 148Ho
150Tm 69 81 149.94996(21)# 3# s βべーた+ 150Er (1+)
150m1Tm 140(140)# keV 2.20(6) s βべーた+ (98.8%) 150Er (6−)
βべーた+, p (1.2%) 149Ho
150m2Tm 810(140)# keV 5.2(3) ms (10+)
151Tm 69 82 150.945483(22) 4.17(10) s βべーた+ 151Er (11/2−)
151m1Tm 92(7) keV 6.6(14) s βべーた+ 151Er (1/2+)
151m2Tm 2655.67(22) keV 451(24) ns (27/2−)
152Tm 69 83 151.94442(8) 8.0(10) s βべーた+ 152Er (2#)−
152m1Tm 100(80)# keV 5.2(6) s βべーた+ 152Er (9)+
152m2Tm 2555.05(19)+X keV 294(12) ns (17+)
153Tm 69 84 152.942012(20) 1.48(1) s αあるふぁ (91%) 149Ho (11/2−)
βべーた+ (9%) 153Er
153mTm 43.2(2) keV 2.5(2) s αあるふぁ (92%) 149Ho (1/2+)
βべーた+ (8%) 153Er
154Tm 69 85 153.941568(15) 8.1(3) s βべーた+ (56%) 154Er (2−)
αあるふぁ (44%) 150Ho
154mTm 70(50) keV 3.30(7) s αあるふぁ (90%) 150Ho (9+)
βべーた+ (10%) 154Er
155Tm 69 86 154.939199(14) 21.6(2) s βべーた+ (98.1%) 155Er (11/2−)
αあるふぁ (1.9%) 151Ho
155mTm 41(6) keV 45(3) s βべーた+ (92%) 155Er (1/2+)
αあるふぁ (8%) 151Ho
156Tm 69 87 155.938980(17) 83.8(18) s βべーた+ (99.93%) 156Er 2−
αあるふぁ (.064%) 152Er
156mTm 203.6(5) keV ~400 ns (11−)
157Tm 69 88 156.93697(3) 3.63(9) min βべーた+ 157Er 1/2+
158Tm 69 89 157.936980(27) 3.98(6) min βべーた+ 158Er 2−
158mTm 50(100)# keV ~20 ns (5+)
159Tm 69 90 158.93498(3) 9.13(16) min βべーた+ 159Er 5/2+
160Tm 69 91 159.93526(4) 9.4(3) min βべーた+ 160Er 1−
160m1Tm 70(20) keV 74.5(15) s IT (85%) 160Tm 5(+#)
βべーた+ (15%) 160Er
160m2Tm 98.2+X keV ~200 ns (8)
161Tm 69 92 160.93355(3) 30.2(8) min βべーた+ 161Er 7/2+
161m1Tm 7.4(2) keV 5# min 1/2+
161m2Tm 78.20(3) keV 110(3) ns 7/2−
162Tm 69 93 161.933995(28) 21.70(19) min βべーた+ 162Er 1−
162mTm 130(40) keV 24.3(17) s IT (82%) 162Tm 5+
βべーた+ (18%) 162Er
163Tm 69 94 162.932651(6) 1.810(5) h βべーた+ 163Er 1/2+
164Tm 69 95 163.93356(3) 2.0(1) min βべーた+ 164Er 1+
164mTm 10(6) keV 5.1(1) min IT (80%) 164Tm 6−
βべーた+ (20%) 164Er
165Tm 69 96 164.932435(4) 30.06(3) h βべーた+ 165Er 1/2+
166Tm 69 97 165.933554(13) 7.70(3) h βべーた+ 166Er 2+
166mTm 122(8) keV 340(25) ms IT 166Tm 6−
167Tm 69 98 166.9328516(29) 9.25(2) d EC 167Er 1/2+
167m1Tm 179.480(19) keV 1.16(6) μみゅーs (7/2)+
167m2Tm 292.820(20) keV 0.9(1) μみゅーs 7/2−
168Tm 69 99 167.934173(3) 93.1(2) d βべーた+ (99.99%) 168Er 3+
βべーた (.01%) 168Yb
169Tm 69 100 168.9342133(27) Observationally Stable[n 8] 1/2+ 1.0000
170Tm 69 101 169.9358014(27) 128.6(3) d βべーた (99.86%) 170Yb 1−
EC (.14%) 170Er
170mTm 183.197(4) keV 4.12(13) μみゅーs (3)+
171Tm 69 102 170.9364294(28) 1.92(1) y βべーた 171Yb 1/2+
171mTm 424.9560(15) keV 2.60(2) μみゅーs 7/2−
172Tm 69 103 171.938400(6) 63.6(2) h βべーた 172Yb 2−
173Tm 69 104 172.939604(5) 8.24(8) h βべーた 173Yb (1/2+)
173mTm 317.73(20) keV 10(3) μみゅーs (7/2−)
174Tm 69 105 173.94217(5) 5.4(1) min βべーた 174Yb (4)−
175Tm 69 106 174.94384(5) 15.2(5) min βべーた 175Yb (1/2+)
176Tm 69 107 175.94699(11) 1.85(3) min βべーた 176Yb (4+)
177Tm 69 108 176.94904(32)# 90(6) s βべーた 177Yb (7/2−)
178Tm 69 109 177.95264(43)# 30# s βべーた 178Yb
179Tm 69 110 178.95534(54)# 20# s βべーた 179Yb 1/2+#
180Tm 69 111 179.95902(43)# 3# s βべーた 180Yb
181Tm 69 112 180.96195(54)# 7# s βべーた 181Yb 1/2+#
182Tm[5] 69 113 181.96619(54)#
183Tm[5] 69 114
This table header & footer:
  1. ^ mTm – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σしぐま) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^ Modes of decay:
    EC: Electron capture
    IT: Isomeric transition


    p: Proton emission
  6. ^ Bold symbol as daughter – Daughter product is stable.
  7. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  8. ^ Believed to undergo αあるふぁ decay to 165Ho

Thulium-170[edit]

Thulium-170 has a half-life of 128.6 days, decaying by βべーた decay about 99.87% of the time and electron capture the remaining 0.13% of the time.[1] Due to its low-energy X-ray emissions, it has been proposed for radiotherapy[6] and as a source in a radiothermal generator.[7]

References[edit]

  1. ^ a b Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ "Standard Atomic Weights: Thulium". CIAAW. 2021.
  3. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. ^ Grzywacz, R.; Karny, M.; Rykaczewski, K. P.; Batchelder, J. C.; Bingham, C. R.; Fong, D.; Gross, C. J.; Krolas, W.; Mazzocchi, C.; Piechaczek, A.; Tantawy, M. N.; Winger, J. A.; Zganjar, E. F. (1 September 2005). "Discovery of the new proton emitter 144Tm". The European Physical Journal A. 25 (1): 145–147. Bibcode:2005EPJAS..25..145G. doi:10.1140/epjad/i2005-06-210-2. ISSN 1434-601X. S2CID 122232690.
  5. ^ a b Tarasov, O. B.; Gade, A.; Fukushima, K.; et al. (2024). "Observation of New Isotopes in the Fragmentation of 198Pt at FRIB". Physical Review Letters. 132 (072501). doi:10.1103/PhysRevLett.132.072501.
  6. ^ Polyak, Andras; Das, Tapas; Chakraborty, Sudipta; Kiraly, Reka; Dabasi, Gabriella; Joba, Robert Peter; Jakab, Csaba; Thuroczy, Julianna; Postenyi, Zita; Haasz, Veronika; Janoki, Gergely; Janoki, Gyozo A.; Pillai, Maroor R.A.; Balogh, Lajos (October 2014). "Thulium-170-Labeled Microparticles for Local Radiotherapy: Preliminary Studies". Cancer Biotherapy and Radiopharmaceuticals. 29 (8): 330–338. doi:10.1089/cbr.2014.1680. ISSN 1084-9785. PMID 25226213 – via Academia.edu.
  7. ^ Dustin, J. Seth; Borrelli, R.A. (December 2021). "Assessment of alternative radionuclides for use in a radioisotope thermoelectric generator". Nuclear Engineering and Design. 385: 111475. doi:10.1016/j.nucengdes.2021.111475.