(Translated by https://www.hiragana.jp/)
半导体材料 - 维基百科,自由的百科全书 とべ转到内容ないよう

はん导体材料ざいりょう

本页使用了标题或全文手工转换
维基百科ひゃっか自由じゆうてき百科ひゃっかぜん

はん导体材料ざいりょういち固体こたい材料ざいりょう,其導電性どうでんせいかい导体绝缘たいこれ间,ぞく半導體はんどうたい

发展

[编辑]

ぶん

[编辑]

以原りょうぶん为:

れつひょう

[编辑]
半導體はんどうたい材料ざいりょうれつひょう
ぞく 元素げんそ 化學かがくしき のうすき (eV) 直接ちょくせつたいすき間接かんせつたいすき
IV 1 Si 1.12[1][2] 間接かんせつ带隙
IV 1 Germanium Ge 0.67[1][2] 間接かんせつたいすき
IV 1 Material properties of diamondえいMaterial properties of diamond C 5.47[1][2] 間接かんせつたいすき
IV 1 , αあるふぁ-Sn Sn 0[3][4] はん金属きんぞく (のう带理论)
IV 2 碳化硅, 3C-SiC SiC 2.3[1] 間接かんせつたいすき
IV 2 碳化硅, 4H-SiC SiC 3.3[1] 間接かんせつたいすき
IV 2 碳化硅, 6H-SiCえい6H-SiC SiC 3.0[1] 間接かんせつたいすき
VI 1 , 硫的同素どうそ形体けいたい S8 2.6[5]
VI 1 Se 1.83 - 2.0[6] 間接かんせつたいすき
VI 1 Se 2.05 間接かんせつたいすき
VI 1 Te 0.33[7]
III-V 2 氮化硼, cubic BN 6.36[8] 間接かんせつたいすき
III-V 2 氮化硼, hexagonal BN 5.96[8] quasi-direct
III-V 2 氮化硼 BN 5.5[9]
III-V 2 磷化硼 BP 2.1[10] 間接かんせつたいすき
III-V 2 砷化硼 BAs 1.82 直接ちょくせつたいすき
III-V 2 砷化硼 B12As2 3.47 間接かんせつたいすき
III-V 2 氮化鋁 AlN 6.28[1] 直接ちょくせつたいすき
III-V 2 磷化铝 AlP 2.45[2] 間接かんせつたいすき
III-V 2 砷化铝 AlAs 2.16[2] 間接かんせつたいすき
III-V 2 锑化铝 AlSb 1.6/2.2[2] 直接ちょくせつたいすき/direct
III-V 2 氮化鎵 GaN 3.44[1][2] 直接ちょくせつたいすき
III-V 2 磷化鎵 GaP 2.26[1][2] 間接かんせつたいすき
III-V 2 Gallium arsenideえいGallium arsenide GaAs 1.42[1][2] 直接ちょくせつたいすき
III-V 2 銻化鎵 GaSb 0.73[1][2] 直接ちょくせつたいすき
III-V 2 氮化銦 InN 0.7[1] 直接ちょくせつたいすき
III-V 2 磷化銦 InP 1.35[1] 直接ちょくせつたいすき
III-V 2 砷化铟 InAs 0.36[1] 直接ちょくせつたいすき
III-V 2 锑化铟 InSb 0.17[1] 直接ちょくせつたいすき
II-VI 2 硒化镉 CdSe 1.74[2] 直接ちょくせつたいすき
II-VI 2 硫化りゅうか CdS 2.42[2] 直接ちょくせつたいすき
II-VI 2 碲化镉 CdTe 1.49[2] 直接ちょくせつたいすき
II-VI 2 氧化鋅 ZnO 3.37[2] 直接ちょくせつたいすき
II-VI 2 硒化锌 ZnSe 2.7[2] 直接ちょくせつたいすき
II-VI 2 硫化りゅうか ZnS 3.54/3.91[2] 直接ちょくせつたいすき
II-VI 2 碲化锌 ZnTe 2.3[2] 直接ちょくせつたいすき
I-VII 2 氯化亚铜 CuCl 3.4[11] 直接ちょくせつたいすき
I-VI 2 Copper sulfideえいCopper sulfide Cu2S 1.2[10] 間接かんせつたいすき
IV-VI 2 硒化铅 PbSe 0.26[7] 直接ちょくせつたいすき
IV-VI 2 硫化りゅうか PbS 0.37[12]
IV-VI 2 碲化铅 PbTe 0.32[1]
IV-VI 2 硫化りゅうか亚锡 SnS 1.3/1.0[13] 直接ちょくせつたいすき/間接かんせつたいすき
IV-VI 2 硫化りゅうか SnS2 2.2[14]
IV-VI 2 碲化亚锡 SnTe 0.18
IV-VI 3 Lead tin tellurideえいLead tin telluride Pb1−xSnxTe 0-0.29
V-VI 2 碲化鉍 Bi2Te3 0.13[1]
II-V 2 磷化镉 Cd3P2 0.5[15]
II-V 2 砷化鎘 Cd3As2 0
II-V 2 磷化锌 Zn3P2 1.5[16] 直接ちょくせつたいすき
II-V 2 磷化锌 ZnP2 2.1[17]
II-V 2 砷化锌 Zn3As2 1.0[18]
II-V 2 锑化锌 Zn3Sb2
2 氧化鈦, 锐钛矿 TiO2 3.20[19] 間接かんせつたいすき
2 氧化鈦, きむ红石 TiO2 3.0[19] 直接ちょくせつたいすき
2 氧化鈦, いた鈦礦 TiO2 3.26[19]
2 氧化亚铜 Cu2O 2.17[20]
2 氧化铜 CuO 1.2
2 氧化鈾 UO2 1.3
2 氧化锡 SnO2 3.7
3 钛酸钡 BaTiO3 3
3 钛酸锶 SrTiO3 3.3
3 铌酸锂 LiNbO3 4
V-VI 2 monoclinic 氧化钒 VO2 0.7[21] 光學こうがくたいすき
2 碘化なまり PbI2 2.4[22]
2 硫化りゅうか MoS2 1.23 eV (2H)[23] 間接かんせつたいすき
2 Gallium(II) selenideえいGallium(II) selenide GaSe 2.1 間接かんせつたいすき
2 硒化铟 InSe 1.26-2.35 eV[24] 直接ちょくせつたいすき (2D間接かんせつたいすき)
2 硫化りゅうか亚锡 SnS >1.5 eV 直接ちょくせつたいすき
2 硫化りゅうか Bi2S3 1.3[1]
Magnetic, diluted (DMS)[25] 3 Gallium manganese arsenideえいGallium manganese arsenide GaMnAs
Magnetic, diluted (DMS) 3 Lead manganese telluride PbMnTe
4 Lanthanum calcium manganate La0.7Ca0.3MnO3
2 氧化亚铁 FeO 2.2 [26]
2 いち氧化镍 NiO 3.6–4.0 直接ちょくせつたいすき[27][28]
2 Europium(II) oxideえいEuropium(II) oxide EuO
2 硫化りゅうか亚铕 EuS
2 溴化铬 CrBr3
其它 3 Copper indium selenideえいCopper indium selenide, CIS CuInSe2 1 直接ちょくせつたいすき
其它 3 Silver gallium sulfide AgGaS2
其它 3 Zinc silicon phosphide ZnSiP2 2.0[10]
其它 2 さん硫化りゅうか めす As2S3 2.7[29] 直接ちょくせつたいすき
其它 2 硫化りゅうか As4S4
其它 2 Platinum silicideえいPlatinum silicide PtSi
其它 2 碘化铋 BiI3
其它 2 碘化汞 HgI2
其它 2 溴化亚铊 TlBr 2.68[30]
其它 2 硫化りゅうか Ag2S 0.9[31]
其它 2 Iron disulfideえいIron disulfide FeS2 0.95[32]
其它 4 Copper zinc tin sulfideえいCopper zinc tin sulfide, CZTS Cu2ZnSnS4 1.49 直接ちょくせつたいすき
其它 4 Copper zinc antimony sulfideえいCopper zinc antimony sulfide, CZAS Cu1.18Zn0.40Sb1.90S7.2 2.2[33] 直接ちょくせつたいすき
其它 3 Copper tin sulfide, CTS Cu2SnS3 0.91[10] 直接ちょくせつたいすき

合金ごうきんひょう

[编辑]
半導體はんどうたい材料ざいりょう合金ごうきんれつひょう
ぞく 元素げんそ 材料ざいりょう 化學かがくしき のうすき (eV) 直接ちょくせつたいすき間接かんせつたいすき
した うえ
IV-VI 3 Lead tin tellurideえいLead tin telluride Pb1−xSnxTe 0 0.29
IV 2 矽鍺 Si1−xGex 0.67 1.11[1] 直接ちょくせつたいすき/間接かんせつたいすき
IV 2 Silicon-tinえいSilicon-tin Si1−xSnx 1.0 1.11 間接かんせつたいすき
III-V 3 Aluminium gallium arsenideえいAluminium gallium arsenide AlxGa1−xAs 1.42 2.16[1] 直接ちょくせつたいすき/間接かんせつたいすき
III-V 3 Indium gallium arsenideえいIndium gallium arsenide InxGa1−xAs 0.36 1.43 直接ちょくせつたいすき
III-V 3 磷化銦鎵 InxGa1−xP 1.35 2.26 直接ちょくせつたいすき/間接かんせつたいすき
III-V 3 Aluminium indium arsenideえいAluminium indium arsenide AlxIn1−xAs 0.36 2.16 直接ちょくせつたいすき/間接かんせつたいすき
III-V 3 Aluminium gallium antimonideえいAluminium gallium antimonide AlxGa1−xSb 0.7 1.61 直接ちょくせつたいすき/間接かんせつたいすき
III-V 3 Aluminium indium antimonideえいAluminium indium antimonide AlxIn1−xSb 0.17 1.61 直接ちょくせつたいすき/間接かんせつたいすき
III-V 3 Gallium arsenide nitride GaAsN
III-V 3 Gallium arsenide phosphideえいGallium arsenide phosphide GaAsP 1.43 2.26 直接ちょくせつたいすき/間接かんせつたいすき
III-V 3 Aluminium arsenide antimonideえいAluminium arsenide antimonide AlAsSb 1.61 2.16 間接かんせつたいすき
III-V 3 Gallium arsenide antimonideえいGallium arsenide antimonide GaAsSb 0.7 1.42[1] 直接ちょくせつたいすき
III-V 3 Aluminium gallium nitrideえいAluminium gallium nitride AlGaN 3.44 6.28 直接ちょくせつたいすき
III-V 3 Aluminium gallium phosphideえいAluminium gallium phosphide AlGaP 2.26 2.45 間接かんせつたいすき
III-V 3 Indium gallium nitrideえいIndium gallium nitride InGaN 2 3.4 直接ちょくせつたいすき
III-V 3 Indium arsenide antimonideえいIndium arsenide antimonide InAsSb 0.17 0.36 直接ちょくせつたいすき
III-V 3 Indium gallium antimonideえいIndium gallium antimonide InGaSb 0.17 0.7 直接ちょくせつたいすき
III-V 4 Aluminium gallium indium phosphideえいAluminium gallium indium phosphide AlGaInP 直接ちょくせつたいすき/間接かんせつたいすき
III-V 4 Aluminium gallium arsenide phosphide AlGaAsP
III-V 4 Indium gallium arsenide phosphideえいIndium gallium arsenide phosphide InGaAsP
III-V 4 Indium gallium arsenide antimonideえいIndium gallium arsenide antimonide InGaAsSb
III-V 4 Indium arsenide antimonide phosphideえいIndium arsenide antimonide phosphide InAsSbP
III-V 4 Aluminium indium arsenide phosphide AlInAsP
III-V 4 Aluminium gallium arsenide nitride AlGaAsN
III-V 4 Indium gallium arsenide nitride InGaAsN
III-V 4 Indium aluminium arsenide nitride InAlAsN
III-V 4 Gallium arsenide antimonide nitride GaAsSbN
III-V 5 Gallium indium nitride arsenide antimonide GaInNAsSb
III-V 5 Gallium indium arsenide antimonide phosphideえいGallium indium arsenide antimonide phosphide GaInAsSbP
II-VI 3 碲化鋅鎘, CZT CdZnTe 1.4 2.2 直接ちょくせつたいすき
II-VI 3 Mercury cadmium tellurideえいMercury cadmium telluride HgCdTe 0 1.5
II-VI 3 Mercury zinc tellurideえいMercury zinc telluride HgZnTe 0 2.25
II-VI 3 Mercury zinc selenide HgZnSe
II-V 4 Zinc cadmium phosphide arsenideえいZinc cadmium phosphide arsenide (Zn1−xCdx)3(P1−yAsy)2[34] 0[35] 1.5[36]
其它 4 Copper indium gallium selenideえいCopper indium gallium selenide, CIGS Cu(In,Ga)Se2 1 1.7 直接ちょくせつたいすき

まいり

[编辑]

參考さんこう文獻ぶんけん

[编辑]
  1. ^ 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 NSM Archive - Physical Properties of Semiconductors. www.ioffe.ru. [2010-07-10]. (原始げんし内容ないようそん档于2015-09-28). 
  2. ^ 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15 2.16 Safa O. Kasap; Peter Capper. Springer handbook of electronic and photonic materials. Springer. 2006: 54,327. ISBN 978-0-387-26059-4. 
  3. ^ S.H. Groves, C.R. Pidgeon, A.W. Ewald, R.J. Wagner Journal of Physics and Chemistry of Solids, Volume 31, Issue 9, September 1970, Pages 2031-2049 (1970). Interband magnetoreflection of αあるふぁ-Sn.
  4. ^ Tin, Sn. www.matweb.com. [2024-02-20]. (原始げんし内容ないようそん于2017-12-01). 
  5. ^ Abass, A. K.; Ahmad, N. H. Indirect band gap investigation of orthorhombic single crystals of sulfur. Journal of Physics and Chemistry of Solids. 1986, 47 (2): 143. Bibcode:1986JPCS...47..143A. doi:10.1016/0022-3697(86)90123-X. 
  6. ^ Todorov, T. Ultrathin high band gap solar cells with improved efficiencies from the world's oldest photovoltaic material. Nature Communications. 2017, 8 (1): 682. Bibcode:2017NatCo...8..682T. PMC 5613033可免费查阅. PMID 28947765. S2CID 256640449. doi:10.1038/s41467-017-00582-9. 
  7. ^ 7.0 7.1 Dorf, Richard. The Electrical Engineering Handbook. CRC Press. 1993: 2235–2236. ISBN 0-8493-0185-8. 
  8. ^ 8.0 8.1 Evans, D A; McGlynn, A G; Towlson, B M; Gunn, M; Jones, D; Jenkins, T E; Winter, R; Poolton, N R J. Determination of the optical band-gap energy of cubic and hexagonal boron nitride using luminescence excitation spectroscopy (PDF). Journal of Physics: Condensed Matter. 2008, 20 (7): 075233 [2024-02-20]. Bibcode:2008JPCM...20g5233E. S2CID 52027854. doi:10.1088/0953-8984/20/7/075233. hdl:2160/612可免费查阅. (原始げんし内容ないようそん (PDF)于2023-05-24). 
  9. ^ Boron nitride nanotube. www.matweb.com. [2024-02-20]. (原始げんし内容ないようそん于2024-02-20). 
  10. ^ 10.0 10.1 10.2 10.3 Madelung, O. Semiconductors: Data Handbook. Birkhäuser. 2004: 1 [2024-02-20]. ISBN 978-3-540-40488-0. (原始げんし内容ないようそん于2023-05-16). 
  11. ^ Claus F. Klingshirn. Semiconductor optics. Springer. 1997: 127. ISBN 978-3-540-61687-0. 
  12. ^ Lead(II) sulfide. www.matweb.com. 
  13. ^ Patel, Malkeshkumar; Indrajit Mukhopadhyay; Abhijit Ray. Annealing influence over structural and optical properties of sprayed SnS thin films. Optical Materials. 26 May 2013, 35 (9): 1693–1699. Bibcode:2013OptMa..35.1693P. doi:10.1016/j.optmat.2013.04.034. 
  14. ^ Burton, Lee A.; Whittles, Thomas J.; Hesp, David; Linhart, Wojciech M.; Skelton, Jonathan M.; Hou, Bo; Webster, Richard F.; O'Dowd, Graeme; Reece, Christian; Cherns, David; Fermin, David J.; Veal, Tim D.; Dhanak, Vin R.; Walsh, Aron. Electronic and optical properties of single crystal SnS2: An earth-abundant disulfide photocatalyst. Journal of Materials Chemistry A. 2016, 4 (4): 1312–1318. doi:10.1039/C5TA08214E. hdl:10044/1/41359可免费查阅. 
  15. ^ Haacke, G.; Castellion, G. A. Preparation and Semiconducting Properties of Cd3P2. Journal of Applied Physics. 1964, 35 (8): 2484–2487. Bibcode:1964JAP....35.2484H. doi:10.1063/1.1702886. 
  16. ^ Kimball, Gregory M.; Müller, Astrid M.; Lewis, Nathan S.; Atwater, Harry A. Photoluminescence-based measurements of the energy gap and diffusion length of Zn3P2 (PDF). Applied Physics Letters. 2009, 95 (11): 112103 [2024-02-20]. Bibcode:2009ApPhL..95k2103K. ISSN 0003-6951. doi:10.1063/1.3225151. (原始げんし内容ないようそん (PDF)于2022-11-22). 
  17. ^ Syrbu, N. N.; Stamov, I. G.; Morozova, V. I.; Kiossev, V. K.; Peev, L. G. Energy band structure of Zn3P2, ZnP2 and CdP2 crystals on wavelength modulated photoconductivity and photoresponnse spectra of Schottky diodes investigation. Proceedings of the First International Symposium on the Physics and Chemistry of II-V Compounds. 1980: 237–242. 
  18. ^ Botha, J. R.; Scriven, G. J.; Engelbrecht, J. A. A.; Leitch, A. W. R. Photoluminescence properties of metalorganic vapor phase epitaxial Zn3As2. Journal of Applied Physics. 1999, 86 (10): 5614–5618. Bibcode:1999JAP....86.5614B. doi:10.1063/1.371569. 
  19. ^ 19.0 19.1 19.2 Rahimi, N.; Pax, R. A.; MacA. Gray, E. Review of functional titanium oxides. I: TiO2 and its modifications. Progress in Solid State Chemistry. 2016, 44 (3): 86–105. doi:10.1016/j.progsolidstchem.2016.07.002. 
  20. ^ O. Madelung; U. Rössler; M. Schulz (编). Cuprous oxide (Cu2O) band structure, band energies. Landolt-Börnstein – Group III Condensed Matter. Numerical Data and Functional Relationships in Science and Technology. Landolt-Börnstein - Group III Condensed Matter. 41C: Non-Tetrahedrally Bonded Elements and Binary Compounds I. 1998: 1–4. ISBN 978-3-540-64583-2. doi:10.1007/10681727_62. 
  21. ^ Shin, S.; Suga, S.; Taniguchi, M.; Fujisawa, M.; Kanzaki, H.; Fujimori, A.; Daimon, H.; Ueda, Y.; Kosuge, K. Vacuum-ultraviolet reflectance and photoemission study of the metal-insulator phase transitions in VO 2, V 6 O 13, and V 2 O 3. Physical Review B. 1990, 41 (8): 4993–5009. Bibcode:1990PhRvB..41.4993S. PMID 9994356. doi:10.1103/physrevb.41.4993. 
  22. ^ Sinha, Sapna. Atomic structure and defect dynamics of monolayer lead iodide nanodisks with epitaxial alignment on graphene. Nature Communications. 2020, 11 (1): 823. Bibcode:2020NatCo..11..823S. PMC 7010709可免费查阅. PMID 32041958. S2CID 256633781. doi:10.1038/s41467-020-14481-z. 
  23. ^ Kobayashi, K.; Yamauchi, J. Electronic structure and scanning-tunneling-microscopy image of molybdenum dichalcogenide surfaces. Physical Review B. 1995, 51 (23): 17085–17095. Bibcode:1995PhRvB..5117085K. PMID 9978722. doi:10.1103/PhysRevB.51.17085. 
  24. ^ Arora, Himani. Charge transport in two-dimensional materials and their electronic applications (PDF). Doctoral Dissertation. 2020 [July 1, 2021]. (原始げんし内容ないようそん (PDF)于2024-01-05). 
  25. ^ B. G. Yacobi Semiconductor materials: an introduction to basic principles页面そん档备份そん互联网档あん) Springer, 2003, ISBN 0-306-47361-5
  26. ^ Kumar, Manish; Sharma, Anjna; Maurya, Indresh Kumar; Thakur, Alpana; Kumar, Sunil. Synthesis of ultra small iron oxide and doped iron oxide nanostructures and their antimicrobial activities. Journal of Taibah University for Science. 2019, 13: 280–285 [2024-02-20]. S2CID 139826266. doi:10.1080/16583655.2019.1565437可免费查阅. (原始げんし内容ないようそん于2023-05-11). 
  27. ^ Synthesis and Characterization of Nano-Dimensional Nickelous Oxide (NiO) Semiconductor S. Chakrabarty and K. Chatterjee
  28. ^ Synthesis and Room Temperature Magnetic Behavior of Nickel Oxide Nanocrystallites Kwanruthai Wongsaprom*[a] and Santi Maensiri [b]
  29. ^ Arsenic sulfide (As2S3). [2024-02-20]. (原始げんし内容ないようそん于2018-10-07). 
  30. ^ Temperature Dependence of Spectroscopic Performance of Thallium Bromide X- and Gamma-Ray Detectors. [2024-02-20]. (原始げんし内容ないようそん于2019-06-18). 
  31. ^ HODES; Ebooks Corporation. Chemical Solution Deposition of Semiconductor Films. CRC Press. 8 October 2002: 319– [28 June 2011]. ISBN 978-0-8247-4345-1. 
  32. ^ Arumona Edward Arumona; Amah A N. Density Functional Theory Calculation of Band Gap of Iron (II) disulfide and Tellurium. Advanced Journal of Graduate Research. 2018, 3: 41–46. doi:10.21467/ajgr.3.1.41-46可免费查阅. 
  33. ^ Prashant K Sarswat; Michael L Free. Enhanced Photoelectrochemical Response from Copper Antimony Zinc Sulfide Thin Films on Transparent Conducting Electrode. International Journal of Photoenergy. 2013, 2013: 1–7. doi:10.1155/2013/154694可免费查阅. 
  34. ^ Trukhan, V. M.; Izotov, A. D.; Shoukavaya, T. V. Compounds and solid solutions of the Zn-Cd-P-As system in semiconductor electronics. Inorganic Materials. 2014, 50 (9): 868–873. S2CID 94409384. doi:10.1134/S0020168514090143. 
  35. ^ Borisenko, Sergey; et al. Experimental Realization of a Three-Dimensional Dirac Semimetal. Physical Review Letters. 2014, 113 (27603): 027603. Bibcode:2014PhRvL.113b7603B. PMID 25062235. S2CID 19882802. arXiv:1309.7978可免费查阅. doi:10.1103/PhysRevLett.113.027603. 
  36. ^ Cisowski, J. Level Ordering in II3-V2 Semiconducting Compounds. Physica Status Solidi B. 1982, 111 (1): 289–293. Bibcode:1982PSSBR.111..289C. doi:10.1002/pssb.2221110132.