Triangelu angeluzuzen bateko angeluen eta aldeen notazioa
Triangelu angeluzuzen batean, funtzio trigonometrikoa aldeen neurrien arteko erlazioak adierazten dituzten funtzioetako edozein da. Funtzio nagusiak sei dira: sinua , kosinua , tangentea , kosekantea , sekantea eta kotangentea . (Ikusi irudia) ABC triangelu angeluzuzen bat izanik, C angelu zuzena dela eta a, b eta c, hurrenez hurren, A, B eta C angeluen aurrez aurreko aldeak direla, funtzio trigonometrikoak hauek dira:[ 1]
sin
α あるふぁ
=
aurkakoa
hipotenusa
=
a
c
{\displaystyle \sin \alpha ={\frac {\textrm {aurkakoa}}{\textrm {hipotenusa}}}=\color {Blue}{\frac {a}{c}}}
cos
α あるふぁ
=
albokoa
hipotenusa
=
b
c
{\displaystyle \cos \alpha ={\frac {\textrm {albokoa}}{\textrm {hipotenusa}}}=\color {Blue}{\frac {b}{c}}}
tan
α あるふぁ
=
aurkakoa
albokoa
=
a
b
{\displaystyle \tan \alpha ={\frac {\textrm {aurkakoa}}{\textrm {albokoa}}}=\color {Blue}{\frac {a}{b}}}
cot
α あるふぁ
=
albokoa
aurkakoa
=
b
a
{\displaystyle \cot \alpha ={\frac {\textrm {albokoa}}{\textrm {aurkakoa}}}=\color {Blue}{\frac {b}{a}}}
sec
α あるふぁ
=
hipotenusa
albokoa
=
h
b
{\displaystyle \sec \alpha ={\frac {\textrm {hipotenusa}}{\textrm {albokoa}}}=\color {Blue}{\frac {h}{b}}}
csc
α あるふぁ
=
hipotenusa
aurkakoa
=
h
a
{\displaystyle \csc \alpha ={\frac {\textrm {hipotenusa}}{\textrm {aurkakoa}}}=\color {Blue}{\frac {h}{a}}}
Funtzio trigonometrikoak triangelu zuzen baten bi aldeen arteko zatidura gisa defini daitezke, haien angeluekin lotuta. Funtzio trigonometrikoak, zirkulu unitate batean (erradio unitarioa) marraztutako triangelu zuzen batean, erlazio trigonometrikoaren kontzeptuaren luzapenak diren funtzioak dira. Definizio modernoagoek serie infinitu edo ekuazio diferentzial batzuen soluzio gisa deskribatzen dituzte, balio positiboetara eta negatiboetara hedatzea ahalbidetuz, eta baita zenbaki konplexuetara ere.
Oinarrizko sei funtzio trigonometriko daude. Azken laurak lehenengo bi funtzioei dagokienez definitzen dira, nahiz eta geometrikoki edo haien erlazioen bidez defini daitezkeen. Funtzio batzuk ohikoak ziren iraganean, eta lehenengo tauletan agertzen dira, baina gaur egun ez dira erabiltzen; adibidez birsena (1 − cos θ しーた ) eta exsekantea (sec θ しーた − 1).
Funtzioa
Laburdura
Baliokidetasunak (radianetan)
Sinu
Sin
sin
θ しーた
≡
1
csc
θ しーた
≡
cos
(
π ぱい
2
−
θ しーた
)
≡
cos
θ しーた
cot
θ しーた
{\displaystyle \sin \;\theta \equiv {\frac {1}{\csc \theta }}\equiv \cos \left({\frac {\pi }{2}}-\theta \right)\equiv {\frac {\cos \theta }{\cot \theta }}\,}
Kosinua
cos
cos
θ しーた
≡
1
sec
θ しーた
≡
sin
(
π ぱい
2
−
θ しーた
)
≡
sin
θ しーた
tan
θ しーた
{\displaystyle \cos \theta \equiv {\frac {1}{\sec \theta }}\equiv \sin \left({\frac {\pi }{2}}-\theta \right)\equiv {\frac {\sin \theta }{\tan \theta }}\,}
Tangentea
tan
tan
θ しーた
≡
1
cot
θ しーた
≡
cot
(
π ぱい
2
−
θ しーた
)
≡
sin
θ しーた
cos
θ しーた
{\displaystyle \tan \theta \equiv {\frac {1}{\cot \theta }}\equiv \cot \left({\frac {\pi }{2}}-\theta \right)\equiv {\frac {\sin \theta }{\cos \theta }}\,}
Kotangentea
cot
cot
θ しーた
≡
1
tan
θ しーた
≡
tan
(
π ぱい
2
−
θ しーた
)
≡
cos
θ しーた
sin
θ しーた
{\displaystyle \cot \theta \equiv {\frac {1}{\tan \theta }}\equiv \tan \left({\frac {\pi }{2}}-\theta \right)\equiv {\frac {\cos \theta }{\sin \theta }}\,}
Sekantea
sec
sec
θ しーた
≡
1
cos
θ しーた
≡
csc
(
π ぱい
2
−
θ しーた
)
≡
tan
θ しーた
sin
θ しーた
{\displaystyle \sec \theta \equiv {\frac {1}{\cos \theta }}\equiv \csc \left({\frac {\pi }{2}}-\theta \right)\equiv {\frac {\tan \theta }{\sin \theta }}\,}
Kosekantea
csc
csc
θ しーた
≡
1
sin
θ しーた
≡
sec
(
π ぱい
2
−
θ しーた
)
≡
cot
θ しーた
cos
θ しーた
{\displaystyle \csc \theta \equiv {\frac {1}{\sin \theta }}\equiv \sec \left({\frac {\pi }{2}}-\theta \right)\equiv {\frac {\cot \theta }{\cos \theta }}\,}
0°
30°
45°
60°
90°
sin
0
{\displaystyle 0}
1
2
{\displaystyle {\frac {1}{2}}}
2
2
{\displaystyle {\frac {\sqrt {2}}{2}}}
3
2
{\displaystyle {\frac {\sqrt {3}}{2}}}
1
{\displaystyle 1}
cos
1
{\displaystyle 1}
3
2
{\displaystyle {\frac {\sqrt {3}}{2}}}
2
2
{\displaystyle {\frac {\sqrt {2}}{2}}}
1
2
{\displaystyle {\frac {1}{2}}}
0
{\displaystyle 0}
tan
0
{\displaystyle 0}
3
3
{\displaystyle {\frac {\sqrt {3}}{3}}}
1
{\displaystyle 1}
3
{\displaystyle {\sqrt {3}}}
∞
{\displaystyle \infty }
cot
∞
{\displaystyle \infty }
3
{\displaystyle {\sqrt {3}}}
1
{\displaystyle 1}
3
3
{\displaystyle {\frac {\sqrt {3}}{3}}}
0
{\displaystyle 0}
sec
1
{\displaystyle 1}
2
3
3
{\displaystyle {\frac {2{\sqrt {3}}}{3}}}
2
{\displaystyle {\sqrt {2}}}
2
{\displaystyle 2}
∞
{\displaystyle \infty }
csc
∞
{\displaystyle \infty }
2
{\displaystyle 2}
2
{\displaystyle {\sqrt {2}}}
2
3
3
{\displaystyle {\frac {2{\sqrt {3}}}{3}}}
1
{\displaystyle 1}
sin
2
(
x
)
+
cos
2
(
x
)
=
1
,
sec
2
(
x
)
−
tan
2
(
x
)
=
1
,
csc
2
(
x
)
−
cot
2
(
x
)
=
1
{\displaystyle \sin ^{2}(x)+\cos ^{2}(x)=1,\qquad \sec ^{2}(x)-\tan ^{2}(x)=1,\qquad \csc ^{2}(x)-\cot ^{2}(x)=1}
sin
(
x
±
y
)
=
sin
(
x
)
cos
(
y
)
±
cos
(
x
)
sin
(
y
)
{\displaystyle \sin(x\pm y)=\sin(x)\cos(y)\pm \cos(x)\sin(y)}
,
csc
(
x
±
y
)
=
1
sin
(
x
±
y
)
{\displaystyle \csc(x\pm y)={\frac {1}{\sin(x\pm y)}}}
cos
(
x
±
y
)
=
cos
(
x
)
cos
(
y
)
∓
sin
(
x
)
sin
(
y
)
{\displaystyle \cos(x\pm y)=\cos(x)\cos(y)\mp \sin(x)\sin(y)}
,
sec
(
x
±
y
)
=
1
cos
(
x
±
y
)
{\displaystyle \sec(x\pm y)={\frac {1}{\cos(x\pm y)}}}
tan
(
x
±
y
)
=
tan
(
x
)
±
tan
(
y
)
1
∓
tan
(
x
)
tan
(
y
)
{\displaystyle \tan(x\pm y)={\frac {\tan(x)\pm \tan(y)}{1\mp \tan(x)\tan(y)}}}
,
cot
(
x
±
y
)
=
cot
(
x
)
cot
(
y
)
∓
1
cot
(
y
)
±
cot
(
x
)
{\displaystyle \cot(x\pm y)={\frac {\cot(x)\cot(y)\mp 1}{\cot(y)\pm \cot(x)}}}
sin
(
2
x
)
=
2
tan
(
x
)
1
+
tan
2
(
x
)
=
2
sin
(
x
)
cos
(
x
)
{\displaystyle \sin(2x)={\frac {2\tan(x)}{1+\tan ^{2}(x)}}=2\sin(x)\cos(x)}
,
csc
(
2
x
)
=
1
sin
(
2
x
)
{\displaystyle \csc(2x)={\frac {1}{\sin(2x)}}}
cos
(
2
x
)
=
1
−
tan
2
(
x
)
1
+
tan
2
(
x
)
=
cos
2
(
x
)
−
sin
2
(
x
)
=
2
cos
2
(
x
)
−
1
{\displaystyle \cos(2x)={\frac {1-\tan ^{2}(x)}{1+\tan ^{2}(x)}}=\cos ^{2}(x)-\sin ^{2}(x)=2\cos ^{2}(x)-1}
,
sec
(
2
x
)
=
1
cos
(
2
x
)
{\displaystyle \sec(2x)={\frac {1}{\cos(2x)}}}
tan
(
2
x
)
=
2
tan
(
x
)
1
−
tan
2
(
x
)
{\displaystyle \tan(2x)={\frac {2\tan(x)}{1-\tan ^{2}(x)}}}
,
cot
(
2
x
)
=
cot
2
(
x
)
−
1
2
cot
(
x
)
{\displaystyle \cot(2x)={\frac {\cot ^{2}(x)-1}{2\cot(x)}}}
sin
(
x
/
2
)
=
±
1
−
cos
(
x
)
2
{\displaystyle \sin(x/2)=\pm {\sqrt {\frac {1-\cos(x)}{2}}}}
,
csc
(
x
/
2
)
=
1
sin
(
x
/
2
)
{\displaystyle \csc(x/2)={\frac {1}{\sin(x/2)}}}
cos
(
x
/
2
)
=
±
1
+
cos
(
x
)
2
{\displaystyle \cos(x/2)=\pm {\sqrt {\frac {1+\cos(x)}{2}}}}
,
sec
(
x
/
2
)
=
1
cos
(
x
/
2
)
{\displaystyle \sec(x/2)={\frac {1}{\cos(x/2)}}}
tan
(
x
/
2
)
=
csc
(
x
)
−
cot
(
x
)
=
±
1
−
cos
(
x
)
1
+
cos
(
x
)
=
sin
(
x
)
1
+
cos
(
x
)
{\displaystyle \tan(x/2)=\csc(x)-\cot(x)=\pm {\sqrt {\frac {1-\cos(x)}{1+\cos(x)}}}={\frac {\sin(x)}{1+\cos(x)}}}
,
cot
(
x
/
2
)
=
csc
(
x
)
+
cot
(
x
)
{\displaystyle \cot(x/2)=\csc(x)+\cot(x)}
sin
(
x
)
sin
(
y
)
=
cos
(
x
−
y
)
−
cos
(
x
+
y
)
2
{\displaystyle \sin(x)\sin(y)={\frac {\cos(x-y)-\cos(x+y)}{2}}}
,
sin
(
x
)
cos
(
y
)
=
sin
(
x
+
y
)
+
sin
(
x
−
y
)
2
{\displaystyle \sin(x)\cos(y)={\frac {\sin(x+y)+\sin(x-y)}{2}}}
cos
(
x
)
cos
(
y
)
=
cos
(
x
+
y
)
+
cos
(
x
−
y
)
2
{\displaystyle \cos(x)\cos(y)={\frac {\cos(x+y)+\cos(x-y)}{2}}}
,
cos
(
x
)
sin
(
y
)
=
sin
(
x
+
y
)
−
sin
(
x
−
y
)
2
{\displaystyle \cos(x)\sin(y)={\frac {\sin(x+y)-\sin(x-y)}{2}}}
sin
2
(
x
)
−
sin
2
(
y
)
=
sin
(
x
+
y
)
sin
(
x
−
y
)
{\displaystyle \sin ^{2}(x)-\sin ^{2}(y)=\sin(x+y)\sin(x-y)}
cos
2
(
x
)
−
sin
2
(
y
)
=
cos
(
x
+
y
)
cos
(
x
−
y
)
{\displaystyle \cos ^{2}(x)-\sin ^{2}(y)=\cos(x+y)\cos(x-y)}
sin
2
(
x
)
cos
2
(
x
)
=
1
−
cos
(
4
x
)
8
{\displaystyle \sin ^{2}(x)\cos ^{2}(x)={\frac {1-\cos(4x)}{8}}}
sin
(
x
)
+
sin
(
y
)
=
2
sin
(
x
+
y
2
)
cos
(
x
−
y
2
)
{\displaystyle \sin(x)+\sin(y)=2\sin \left({\frac {x+y}{2}}\right)\cos \left({\frac {x-y}{2}}\right)}
,
sin
(
x
)
−
sin
(
y
)
=
2
sin
(
x
−
y
2
)
cos
(
x
+
y
2
)
{\displaystyle \sin(x)-\sin(y)=2\sin \left({\frac {x-y}{2}}\right)\cos \left({\frac {x+y}{2}}\right)}
cos
(
x
)
+
cos
(
y
)
=
2
cos
(
x
+
y
2
)
cos
(
x
−
y
2
)
{\displaystyle \cos(x)+\cos(y)=2\cos \left({\frac {x+y}{2}}\right)\cos \left({\frac {x-y}{2}}\right)}
,
cos
(
x
)
−
cos
(
y
)
=
−
2
sin
(
x
+
y
2
)
sin
(
x
−
y
2
)
{\displaystyle \cos(x)-\cos(y)=-2\sin \left({\frac {x+y}{2}}\right)\sin \left({\frac {x-y}{2}}\right)}
tan
(
x
)
+
tan
(
y
)
=
sin
(
x
+
y
)
cos
(
x
)
cos
(
y
)
{\displaystyle \tan(x)+\tan(y)={\frac {\sin(x+y)}{\cos(x)\cos(y)}}}
,
tan
(
x
)
−
tan
(
y
)
=
sin
(
x
−
y
)
cos
(
x
)
cos
(
y
)
{\displaystyle \tan(x)-\tan(y)={\frac {\sin(x-y)}{\cos(x)\cos(y)}}}
sin
2
(
x
)
=
1
−
cos
(
2
x
)
2
{\displaystyle \sin ^{2}(x)={\frac {1-\cos(2x)}{2}}}
{\displaystyle \quad }
cos
2
(
x
)
=
1
+
cos
(
2
x
)
2
{\displaystyle \cos ^{2}(x)={\frac {1+\cos(2x)}{2}}}
{\displaystyle \quad }
tan
2
(
x
)
=
1
−
cos
(
2
x
)
1
+
cos
(
2
x
)
{\displaystyle \tan ^{2}(x)={\frac {1-\cos(2x)}{1+\cos(2x)}}}
sin
2
(
x
)
−
sin
2
(
y
)
=
sin
(
x
+
y
)
sin
(
x
−
y
)
{\displaystyle \sin ^{2}(x)-\sin ^{2}(y)=\sin(x+y)\sin(x-y)}
cos
2
(
x
)
−
sin
2
(
y
)
=
cos
(
x
+
y
)
cos
(
x
−
y
)
{\displaystyle \cos ^{2}(x)-\sin ^{2}(y)=\cos(x+y)\cos(x-y)}
sin
2
(
x
)
cos
2
(
x
)
=
1
−
cos
(
4
x
)
8
{\displaystyle \sin ^{2}(x)\cos ^{2}(x)={\frac {1-\cos(4x)}{8}}}
d
d
x
sin
(
x
)
=
cos
(
x
)
{\displaystyle {\frac {d}{dx}}\sin(x)=\cos(x)}
d
d
x
cos
(
x
)
=
−
sin
(
x
)
{\displaystyle {\frac {d}{dx}}\cos(x)=-\sin(x)}
d
d
x
tan
(
x
)
=
sec
2
(
x
)
=
1
+
tan
2
(
x
)
{\displaystyle {\frac {d}{dx}}\tan(x)=\sec ^{2}(x)=1+\tan ^{2}(x)}
d
d
x
csc
(
x
)
=
−
csc
(
x
)
cot
(
x
)
{\displaystyle {\frac {d}{dx}}\csc(x)=-\csc(x)\cot(x)}
d
d
x
sec
(
x
)
=
sec
(
x
)
tan
(
x
)
{\displaystyle {\frac {d}{dx}}\sec(x)=\sec(x)\tan(x)}
d
d
x
cot
(
x
)
=
−
csc
2
(
x
)
=
−
(
1
+
cot
2
(
x
)
)
{\displaystyle {\frac {d}{dx}}\cot(x)=-\csc ^{2}(x)=-(1+\cot ^{2}(x))}
Funtzio trigonometrikoen integralen zerrenda
∫
sin
(
x
)
d
x
=
−
cos
(
x
)
+
C
{\displaystyle \int \sin(x)dx=-\cos(x)+C}
∫
cos
(
x
)
d
x
=
sin
(
x
)
+
C
{\displaystyle \int \cos(x)dx=\sin(x)+C}
∫
tan
(
x
)
d
x
=
−
ln
|
cos
(
x
)
|
+
C
{\displaystyle \int \tan(x)dx=-\ln |\cos(x)|+C}
∫
csc
(
x
)
d
x
=
−
ln
|
csc
(
x
)
+
cot
(
x
)
|
+
C
{\displaystyle \int \csc(x)dx=-\ln |\csc(x)+\cot(x)|+C}
∫
sec
(
x
)
d
x
=
ln
|
sec
(
x
)
+
tan
(
x
)
|
+
C
{\displaystyle \int \sec(x)dx=\ln |\sec(x)+\tan(x)|+C}
∫
cot
(
x
)
d
x
=
ln
|
sin
(
x
)
|
+
C
{\displaystyle \int \cot(x)dx=\ln |\sin(x)|+C}
Sinuaren teorema.
A
B
C
{\displaystyle ABC}
triangelu batean
α あるふぁ
,
β べーた
,
γ がんま
{\displaystyle \alpha ,\beta ,\gamma }
hurrenez hurren
a
,
b
,
c
{\displaystyle a,b,c}
aldeen aurkako angeluak baldin badira, orduan betetzen da:
a
sin
(
α あるふぁ
)
=
b
sin
(
β べーた
)
=
c
sin
(
γ がんま
)
{\displaystyle {\frac {a}{\sin(\alpha )}}={\frac {b}{\sin(\beta )}}={\frac {c}{\sin(\gamma )}}}
Kosinuaren teorema.
A
B
C
{\displaystyle ABC}
triangelu batean
α あるふぁ
,
β べーた
,
γ がんま
{\displaystyle \alpha ,\beta ,\gamma }
hurrenez hurren
a
,
b
,
c
{\displaystyle a,b,c}
aldeen aurkako angeluak baldin badira, orduan betetzen da:
a
2
=
b
2
+
c
2
−
2
b
c
cos
(
α あるふぁ
)
,
b
2
=
a
2
+
c
2
−
2
a
c
cos
(
β べーた
)
,
c
2
=
a
2
+
b
2
−
2
a
b
cos
(
γ がんま
)
{\displaystyle a^{2}=b^{2}+c^{2}-2bc\cos(\alpha ),\quad b^{2}=a^{2}+c^{2}-2ac\cos(\beta ),\quad c^{2}=a^{2}+b^{2}-2ab\cos(\gamma )}
Tangentearen teorema.
A
B
C
{\displaystyle ABC}
triangelu batean
α あるふぁ
,
β べーた
,
γ がんま
{\displaystyle \alpha ,\beta ,\gamma }
hurrenez hurren
a
,
b
,
c
{\displaystyle a,b,c}
aldeen aurkako angeluak baldin badira, orduan betetzen da:
a
−
b
a
+
b
=
tan
(
α あるふぁ
−
β べーた
2
)
tan
(
α あるふぁ
+
β べーた
2
)
,
b
−
c
b
+
c
=
tan
(
β べーた
−
γ がんま
2
)
tan
(
β べーた
+
γ がんま
2
)
,
a
−
c
a
+
c
=
tan
(
α あるふぁ
−
γ がんま
2
)
tan
(
α あるふぁ
+
γ がんま
2
)
{\displaystyle {\frac {a-b}{a+b}}={\frac {\tan \left({\frac {\alpha -\beta }{2}}\right)}{\tan \left({\frac {\alpha +\beta }{2}}\right)}},\quad {\frac {b-c}{b+c}}={\frac {\tan \left({\frac {\beta -\gamma }{2}}\right)}{\tan \left({\frac {\beta +\gamma }{2}}\right)}},\quad {\frac {a-c}{a+c}}={\frac {\tan \left({\frac {\alpha -\gamma }{2}}\right)}{\tan \left({\frac {\alpha +\gamma }{2}}\right)}}}