mTOR(日本ではエムトールと呼ばれることもあるが、正しくはエムトアまたはエムトーである)は哺乳類などの動物で細胞内シグナル伝達に関与するタンパク質キナーゼ(セリン・スレオニンキナーゼ)の一種[1][2]。酵母を用いたスクリーニングでラパマイシンの標的分子として発見されたため、TOR (target of rapamycin)つまり「ラパマイシン標的タンパク質」の略として命名された(TOR1、TOR2の2種類がある)[1][3][4]。後に哺乳類のホモログが見出され、同定した研究者らによりFRAP1、RAFT1などと命名されたが、一般にはmTOR (mammalian TOR:哺乳類のTOR)との呼称が普及した[5]。その後、様々な生物種でTORホモログが広く同定されたのを受け、HUGO遺伝子命名法委員会 (HGNC)は2009年に本遺伝子の公式名をMTOR(mechanistic target of rapamycin)に決定した。なお、HGNCによる公式名称では、Mはmechanistic(物理的、機械的、機構的)の略であり、当初一般的であったmammalian(哺乳類の)ではない。
mTOR複合体1(mTORC1)はmTOR、mLST8/GβL(mammalian LST8/G-protein β-subunit like protein)、Raptor(regulatory associated protein of mTOR)およびPRAS40とDEPTORからなる。この複合体は、栄養・エネルギー・酸化還元状態に関する情報により、リボソームの生産とタンパク質生合成を促進し、タンパク質分解を抑え細胞成長を促す。mTORC1はラパマイシンにより阻害され[1]、また低栄養状態、成長因子の不足、還元ストレス等の刺激により抑制される。これらの刺激があるとmTORとRaptorの相互作用が弱くなりmTORキナーゼが活性化される。逆にこれらがなくなると相互作用が強まることにより、mTORキナーゼは不活性化される。mTORC1の重要な標的にはp70-S6キナーゼ1 (S6K1)や4E-BP1(真核生物翻訳開始因子4E[eIF4E]結合タンパク質1)がある。mTORC1はS6K1をリン酸化し、これにより活性化されたS6K1はS6リボソームタンパク質や他の翻訳関係成分の活性化を通じてタンパク質合成を開始させる。また、リン酸化されていない4E-BP1はeIF4Eに結合し、これが5'キャップ構造を持つmRNAに結合するのを妨げでいるが、mTORC1が4E-BP1をリン酸化すると、eIF4Eの機能が回復する。
mTOR複合体2(mTORC2)は主にmTOR、GβL、Rictor(rapamycin-insensitive companion of mTOR)、およびmSIN1(mammalian stress-activated protein kinase interacting protein 1)からなる。mTORC2も成長因子や栄養状態により調節を受けるが、ラパマイシンによる阻害は受けない[1]。一方で、長時間のラパマイシン処理によって阻害されることが報告されている。TORC2は細胞の増殖や生存の調節に重要なセリン・スレオニンキナーゼであるAkt(別名タンパク質キナーゼB[PKB])をリン酸化し、これによりAktの別位置のリン酸化が促進され、Aktは完全に活性化される。mTORC2は細胞骨格の調節にも関与する。