Параллелограмм: различия между версиями
Перейти к навигации
Перейти к поиску
[непроверенная версия] | [непроверенная версия] |
Содержимое удалено Содержимое добавлено
Метки: отменено через визуальный редактор |
Метки: отменено через визуальный редактор |
||
Строка 24: | Строка 24: | ||
== Признаки параллелограмма == |
== Признаки параллелограмма == |
||
[[Четырёхугольник]] ABCD является параллелограммом, если выполняется одно из следующих условий (в этом случае выполняются и все остальные): |
|||
# У четырёхугольника без самопересечений две противоположные стороны одновременно равны и параллельны: <math>AB = CD, AB \parallel CD</math>. |
|||
# Все противоположные углы попарно равны: <math>\angle A = \angle C, \angle B = \angle D</math>. |
|||
# У четырёхугольника без самопересечений все противоположные стороны попарно равны: <math>AB = CD, BC=DA</math>. |
|||
# Все противоположные стороны попарно параллельны: <math> AB \parallel CD, BC \parallel DA</math>. |
|||
# Диагонали делятся в точке их пересечения пополам: <math>AO = OC, BO = OD</math>. |
|||
# Сумма расстояний между серединами противоположных сторон выпуклого четырёхугольника равна его полупериметру. |
|||
# Сумма квадратов диагоналей равна сумме квадратов сторон выпуклого четырёхугольника: <math>AC^2+BD^2 = AB^2+BC^2+CD^2+DA^2</math>. |
|||
== Площадь параллелограмма == |
|||
: ''Здесь приведены формулы, свойственные именно параллелограмму. См. также формулы для [[Четырёхугольник#Площадь|площади произвольных четырёхугольников]].'' |
: ''Здесь приведены формулы, свойственные именно параллелограмму. См. также формулы для [[Четырёхугольник#Площадь|площади произвольных четырёхугольников]].'' |
||
Версия от 10:42, 5 марта 2023
Параллелогра́мм (др.-греч. παραλληλόγραμμον ← παράλληλος «параллельный» + γραμμή «линия») — четырёхугольник, у которого противолежащие стороны попарно параллельны, то есть лежат на параллельных прямых. (См. другие определения )
Частными случаями параллелограмма являются прямоугольник, квадрат и ромб.
Свойства
- Противолежащие стороны параллелограмма равны.
- Противолежащие углы параллелограмма равны.
- Сумма углов, прилежащих к одной стороне, равна 180° (по свойству параллельных прямых).
- Диагонали параллелограмма пересекаются, и точка пересечения делит их пополам:
- .
- Точка пересечения диагоналей является центром симметрии параллелограмма.
- Параллелограмм диагональю делится на два равных треугольника.
- Средние линии параллелограмма пересекаются в точке пересечения его диагоналей. В этой точке две его диагонали и две его средние линии делятся пополам.
- Тождество параллелограмма: сумма квадратов диагоналей параллелограсть
- — длина стороны ,
- — длина стороны ,
- и — длины диагоналей; тогда
- Тождество параллелограмма есть простое следствие формулы Эйлера для произвольного четырехугольника: учетверённый квадрат расстояния между серединами диагоналей равен сумме квадратов сторон четырёхугольника минус сумма квадратов его диагоналей. У параллелограмма противоположные стороны равны, а расстояние между серединами диагоналей равно нулю.
- Аффинное преобразование всегда переводит параллелограмм в параллелограмм. Для любого параллелограмма существует аффинное преобразование, которое отображает его в квадрат.
Признаки параллелограмма
- Здесь приведены формулы, свойственные именно параллелограмму. См. также формулы для площади произвольных четырёхугольников.
Площадь параллелограмма равна произведению его основания на высоту:
- , где — сторона, — высота, проведённая к этой стороне.
Площадь параллелограмма равна произведению его сторон и синуса угла между ними:
- где и — стороны, а — угол между сторонами и .
Также площадь параллелограмма может быть выражена через стороны и длину любой из диагоналей по формуле Герона как сумма площадей двух равных примыкающих треугольников:
- где
См. также
Примечания
Для улучшения этой статьи желательно:
|