(Translated by https://www.hiragana.jp/)
A060006 -id:A060006 - OEIS
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a060006 -id:a060006
Displaying 1-10 of 74 results found. page 1 2 3 4 5 6 7 8
     Sort: relevance | references | number | modified | created      Format: long | short | data
A100283 a(n) = floor(p*(n+1)) - floor(p*(n)) - 1 where p = Padovan plastic number = 1.324718... (cf. A060006). +20
1
0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
A rabbit-like sequence generated by the Padovan plastic number.
The well-known rabbit sequence is generated by taking the difference between the nearest integer less than phi*(n+1) minus the nearest integer less than phi*(n). If this value is 2, then the n-th rabbit sequence value is one. If this value is 1, the n-th rabbit sequence is 0. The sequence given is calculated in a similar manner, but using the plastic constant = 1.324717957244... instead of phi = 1.618033... = (1+sqrt(5))/2. It is 0001 followed by 11 copies of 001 followed by 0001 followed by 12 copies of 001 followed by 11 copies of 001 followed by similar patterns of 0001 followed by n copies of 001 where n is 11 or 12.
REFERENCES
Midhat J. Gazale, Gnomon: From Pharaohs to Fractals, Princeton University Press, 1999
LINKS
Ian Stewart, Tales of a Neglected Number, Mathematical Recreations, Scientific American, Vol. 274, No. 6 (1996), pp. 102-103.
PROG
(PARI) p=(sqrt(23/108)+.5)^(1/3) + (abs( sqrt(23/108) -.5))^(1/3); for(n = 0, n = 200, r = floor(p*(n+1)) - floor(p*n) -1; print (r ))
CROSSREFS
KEYWORD
nonn
AUTHOR
John Lien, Dec 28 2004
EXTENSIONS
Partially edited by N. J. A. Sloane, Jun 13 2007
STATUS
approved
A116397 Decimal expansion of P^24 where P = plastic constant (A060006). +20
0
8, 5, 3, 0, 2, 5, 7, 9, 1, 9, 1, 9, 1, 9, 6, 2, 4, 8, 8, 8, 9, 5, 4, 2, 6, 2, 5, 7, 0, 8, 4, 0, 1, 5, 3, 3, 6, 7, 3, 5, 3, 8, 3, 9, 8, 6, 3, 3, 5, 1, 7, 9, 7, 0, 3, 9, 9, 3, 7, 0, 7, 8, 2, 4, 5, 9, 4, 6, 5, 5, 1, 1, 6, 0, 5, 6, 8, 6, 3, 3, 0, 5, 7, 2, 1, 4, 0, 7, 4, 5, 7, 8, 3, 6, 2, 3, 6, 9, 0, 0, 1, 7, 1, 0, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
3,1
LINKS
Eric Weisstein's World of Mathematics, Plastic Constant
Eric Weisstein's World of Mathematics, Dedekind Eta Function
EXAMPLE
853.0257919191962488...
MATHEMATICA
RealDigits[(x/.First[Solve[x^3-x-1==0, x]])^24, 10, 120][[1]] (* Harvey P. Dale, Jun 24 2011 *)
Root[ #^3 - 853#^2 - 22# - 1 & , 1] // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, Mar 05 2013 *)
CROSSREFS
Cf. A060006.
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Feb 12 2006
STATUS
approved
A167286 Signature sequence of the smallest Pisot number (A060006). +20
0
1, 2, 1, 3, 2, 1, 4, 3, 2, 1, 5, 4, 3, 2, 6, 1, 5, 4, 3, 7, 2, 6, 1, 5, 4, 8, 3, 7, 2, 6, 1, 5, 9, 4, 8, 3, 7, 2, 6, 10, 1, 5, 9, 4, 8, 3, 7, 11, 2, 6, 10, 1, 5, 9, 4, 8, 12, 3, 7, 11, 2, 6, 10, 1, 5, 9, 13, 4, 8, 12, 3, 7, 11, 2, 6, 10, 14, 1, 5, 9, 13, 4, 8, 12, 3, 7, 11, 15, 2, 6, 10, 14, 1, 5 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
LINKS
MATHEMATICA
m = x /. Solve[x^3 - x - 1 == 0, x][[1]]
Take[Transpose[Sort[Flatten[Table[{i + j*m, i}, {i, 25}, {j, 17}], 1], #1[[1]] < #2[[1]] &]][[2]], 95]
CROSSREFS
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Nov 01 2009
STATUS
approved
A240982 Decimal expansion of the limit of a recursive sequence connected to the Plastic constant (A060006). +20
0
1, 8, 1, 6, 8, 8, 3, 4, 2, 4, 2, 4, 4, 7, 4, 0, 3, 1, 2, 4, 4, 8, 1, 8, 8, 2, 0, 2, 2, 2, 4, 8, 0, 7, 4, 5, 2, 9, 6, 5, 9, 2, 1, 7, 5, 7, 7, 5, 8, 7, 3, 4, 2, 3, 1, 5, 8, 1, 2, 5, 2, 9, 1, 6, 7, 0, 3, 9, 4, 7, 1, 7, 7, 1, 6, 0, 4, 1, 5, 3, 6, 7, 7, 5, 8, 0, 5, 7, 8, 6, 8, 7, 9, 6, 3, 9, 2, 3, 9 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
1,2
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.2 Cubic Variations of the Golden Mean, p. 9.
LINKS
Eric Weisstein's World of Mathematics, Plastic Constant
Wikipedia, Plastic number
FORMULA
psi(1)=1, psi(n) = (1+psi(n-1))^(1/3),
lim_(n -> infinity) (psi0-psi(n))*(3*(1+1/psi0))^n, where psi0 = A060006 = the Plastic constant.
EXAMPLE
1.8168834242447403124481882022248074529659217577587342315812529167...
MATHEMATICA
digits = 99; n0 = 10; dn = 10; psi0 = A060006 = Root[x^3 - x - 1, x, 1] // N[#, 3*digits]&; Clear[psi, limPsi]; psi[1] = 1; psi[n_] := psi[n] = (1 + psi[n - 1])^(1/3) // N[#, 3*digits]&; limPsi[n_] := limPsi[n] = (psi0 - psi[n])*(3*(1 + 1/psi0))^n; limPsi[n = n0]; limPsi[n = n0 + dn]; While[RealDigits[limPsi[n], 10, digits] != RealDigits[limPsi[n - dn], 10, digits], Print["n = ", n ]; n = n + dn]; RealDigits[limPsi[n], 10, digits] // First
CROSSREFS
Cf. A060006.
KEYWORD
nonn,cons
AUTHOR
STATUS
approved
A000931 Padovan sequence (or Padovan numbers): a(n) = a(n-2) + a(n-3) with a(0) = 1, a(1) = a(2) = 0.
(Formerly M0284 N0102)
+10
246
1, 0, 0, 1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, 616, 816, 1081, 1432, 1897, 2513, 3329, 4410, 5842, 7739, 10252, 13581, 17991, 23833, 31572, 41824, 55405, 73396, 97229, 128801, 170625 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,9
COMMENTS
Number of compositions of n into parts congruent to 2 mod 3 (offset -1). - Vladeta Jovovic, Feb 09 2005
a(n) is the number of compositions of n into parts that are odd and >= 3. Example: a(10)=3 counts 3+7, 5+5, 7+3. - David Callan, Jul 14 2006
Referred to as N0102 in R. K. Guy's "Anyone for Twopins?" - Rainer Rosenthal, Dec 05 2006
Zagier conjectures that a(n+3) is the maximum number of multiple zeta values of weight n > 1 which are linearly independent over the rationals. - Jonathan Sondow and Sergey Zlobin (sirg_zlobin(AT)mail.ru), Dec 20 2006
Starting with offset 6: (1, 1, 2, 2, 3, 4, 5, ...) = INVERT transform of A106510: (1, 1, -1, 0, 1, -1, 0, 1, -1, ...). - Gary W. Adamson, Oct 10 2008
Starting with offset 7, the sequence 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, ... is called the Fibonacci quilt sequence by Catral et al., in Fib. Q. 2017. - N. J. A. Sloane, Dec 24 2021
Triangle A145462: right border = A000931 starting with offset 6. Row sums = Padovan sequence starting with offset 7. - Gary W. Adamson, Oct 10 2008
Starting with offset 3 = row sums of triangle A146973 and INVERT transform of [1, -1, 2, -2, 3, -3, ...]. - Gary W. Adamson, Nov 03 2008
a(n+5) corresponds to the diagonal sums of "triangle": 1; 1; 1,1; 1,1; 1,2,1; 1,2,1; 1,3,3,1; 1,3,3,1; 1,4,6,4,1; ..., rows of Pascal's triangle (A007318) repeated. - Philippe Deléham, Dec 12 2008
With offset 3: (1, 0, 1, 1, 1, 2, 2, ...) convolved with the tribonacci numbers prefaced with a "1": (1, 1, 1, 2, 4, 7, 13, ...) = the tribonacci numbers, A000073. (Cf. triangle A153462.) - Gary W. Adamson, Dec 27 2008
a(n) is also the number of strings of length (n-8) from an alphabet {A, B} with no more than one A or 2 B's consecutively. (E.g., n = 4: {ABAB,ABBA,BABA,BABB,BBAB} and a(4+8) = 5.) - Toby Gottfried, Mar 02 2010
p(n):=A000931(n+3), n >= 1, is the number of partitions of the numbers {1,2,3,...,n} into lists of length two or three containing neighboring numbers. The 'or' is inclusive. For n=0 one takes p(0)=1. For details see the W. Lang link. There the explicit formula for p(n) (analog of the Binet-de Moivre formula for Fibonacci numbers) is also given. Padovan sequences with different inputs are also considered there. - Wolfdieter Lang, Jun 15 2010
Equals the INVERTi transform of Fibonacci numbers prefaced with three 1's, i.e., (1 + x + x^2 + x^3 + x^4 + 2x^5 + 3x^6 + 5x^7 + 8x^8 + 13x^9 + ...). - Gary W. Adamson, Apr 01 2011
When run backwards gives (-1)^n*A050935(n).
a(n) is the top left entry of the n-th power of the 3 X 3 matrix [0, 0, 1; 1, 0, 1; 0, 1, 0] or of the 3 X 3 matrix [0, 1, 0; 0, 0, 1; 1, 1, 0]. - R. J. Mathar, Feb 03 2014
Figure 4 of Brauchart et al., 2014, shows a way to "visualize the Padovan sequence as cuboid spirals, where the dimensions of each cuboid made up by the previous ones are given by three consecutive numbers in the sequence". - N. J. A. Sloane, Mar 26 2014
a(n) is the number of closed walks from a vertex of a unidirectional triangle containing an opposing directed edge (arc) between the second and third vertices. Equivalently the (1,1) entry of A^n where the adjacency matrix of digraph is A=(0,1,0;0,0,1;1,1,0). - David Neil McGrath, Dec 19 2014
Number of compositions of n-3 (n >= 4) into 2's and 3's. Example: a(12)=5 because we have 333, 3222, 2322, 2232, and 2223. - Emeric Deutsch, Dec 28 2014
The Hoffman (2015) paper "offers significant evidence that the number of quantities needed to generate the weight-n multiple harmonic sums mod p is" a(n). - N. J. A. Sloane, Jun 24 2016
a(n) gives the number of compositions of n-5 into odd parts where the order of the 1's does not matter. For example, a(11)=4 counts the following compositions of 6: (5,1)=(1,5), (3,3), (3,1,1,1)=(1,3,1,1)=(1,1,3,1)=(1,1,1,3), (1,1,1,1,1,1). - Gregory L. Simay, Aug 04 2016
For n > 6, a(n) is the number of maximal matchings in the (n-5)-path graph, maximal independent vertex sets and minimal vertex covers in the (n-6)-path graph, and minimal edge covers in the (n-5)-pan graph and (n-3)-path graphs. - Eric W. Weisstein, Mar 30, Aug 03, and Aug 07 2017
From James Mitchell and Wilf A. Wilson, Jul 21 2017: (Start)
a(2n + 5) + 2n - 4, n > 2, is the number of maximal subsemigroups of the monoid of order-preserving mappings on a set with n elements.
a(n + 6) + n - 3, n > 3, is the number of maximal subsemigroups of the monoid of order-preserving or reversing mappings on a set with n elements.
(End)
Has the property that the largest of any four consecutive terms equals the sum of the two smallest. - N. J. A. Sloane, Aug 29 2017 [David Nacin points out that there are many sequences with this property, such as 1,1,1,2,1,1,1,2,1,1,1,2,... or 2,3,4,5,2,3,4,5,2,3,4,5,... or 2,2,1,3,3, 4,1,4, 5,5,1,6,6, 7,1,7, 8,8,1,9,9, 10,1,10, ... (spaces added for clarity), and a conjecture I made here in 2017 was simply wrong. I have deleted it. - N. J. A. Sloane, Oct 23 2018]
a(n) is also the number of maximal cliques in the (n+6)-path complement graph. - Eric W. Weisstein, Apr 12 2018
a(n+8) is the number of solus bitstrings of length n with no runs of 3 zeros. - Steven Finch, Mar 25 2020
Named after the architect Richard Padovan (b. 1935). - Amiram Eldar, Jun 08 2021
Shannon et al. (2006) credit a French architecture student Gérard Cordonnier with the discovery of these numbers.
For n >= 3, a(n) is the number of sequences of 0s and 1s of length (n-2) that begin with a 0, end with a 0, contain no two consecutive 0s, and contain no three consecutive 1s. - Yifan Xie, Oct 20 2022
REFERENCES
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 47, ex. 4.
Minerva Catral, Pari L. Ford, Pamela E. Harris, Steven J. Miller, Dawn Nelson, Zhao Pan, and Huanzhong Xu, Legal Decompositions Arising from Non-positive Linear Recurrences, Fib. Quart., 55:3 (2017), 252-275. [Note that there is an earlier version of this paper, with only five authors, on the arXiv in 2016. Note to editors: do not merge these two citations. - N. J. A. Sloane, Dec 24 2021]
Richard K. Guy, "Anyone for Twopins?" in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 10-11.
Silvia Heubach and Toufik Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.
A. G. Shannon, P. G. Anderson and A. F. Horadam, Properties of Cordonnier, Perrin and Van der Laan numbers, International Journal of Mathematical Education in Science and Technology, Volume 37:7 (2006), 825-831. See P_n.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Ian Stewart, L'univers des nombres, "La sculpture et les nombres", pp. 19-20, Belin-Pour La Science, Paris, 2000.
Steven J. Tedford, Combinatorial identities for the Padovan numbers, Fib. Q., Vol. 57, No. 4 (2019), pp. 291-298.
Hans van der Laan, Het plastische getal. XV lessen over de grondslagen van de architectonische ordonnantie. Leiden, E.J. Brill, 1967.
Don Zagier, Values of zeta functions and their applications, in First European Congress of Mathematics (Paris, 1992), Vol. II, A. Joseph et al. (eds.), Birkhäuser, Basel, 1994, pp. 497-512.
LINKS
Indranil Ghosh, Table of n, a(n) for n = 0..8180 (terms 0..1000 from T. D. Noe)
Kouèssi Norbert Adédji, Japhet Odjoumani, and Alain Togbé, Padovan and Perrin numbers as products of two generalized Lucas numbers, Archivum Mathematicum, Vol. 59 (2023), No. 4, 315-337.
David Applegate, Marc LeBrun and N. J. A. Sloane, Dismal Arithmetic, J. Int. Seq. 14 (2011) # 11.9.8.
Andrei Asinowski, Cyril Banderier and Valerie Roitner, Generating functions for lattice paths with several forbidden patterns, (2019).
Cristina Ballantine and Mircea Merca, Padovan numbers as sums over partitions into odd parts, Journal of Inequalities and Applications, (2016) 2016:1. doi:10.1186/s13660-015-0952-5.
Barry Balof, Restricted tilings and bijections, J. Integer Seq., Vol. 15, No. 2 (2012), Article 12.2.3, 17 pp.
Jean-Luc Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, Vol. 18, No. 1 (2011), #P178.
Jean-Luc Baril, Avoiding patterns in irreducible permutations, Discrete Mathematics and Theoretical Computer Science, Vol. 17, No. 3 (2016), pp. 13-30. See Table 4.
Jean-Luc Baril and Jean-Marcel Pallo, A Motzkin filter in the Tamari lattice, Discrete Mathematics, Vol. 338, No. 8 (2015), pp. 1370-1378.
Daniel Birmajer, Juan B. Gil and Michael D. Weiner, Linear recurrence sequences with indices in arithmetic progression and their sums, arXiv preprint arXiv:1505.06339 [math.NT], 2015.
Daniel Birmajer, Juan B. Gil and Michael D. Weiner, Linear Recurrence Sequences and Their Convolutions via Bell Polynomials, Journal of Integer Sequences, Vol. 18 (2015), #15.1.2.
Khadidja Boubellouta and Mohamed Kerada, Some Identities and Generating Functions for Padovan Numbers, Tamap Journal of Mathematics and Statistics (2019), Article SI04.
Olivier Bouillot, The Algebra of Multitangent Functions, arXiv:1404.0992 [math.NT], 2014.
Johann S. Brauchart, Peter D. Dragnev and Edward B. Saff, An Electrostatics Problem on the Sphere Arising from a Nearby Point Charge, arXiv preprint arXiv:1402.3367 [math-ph], 2014. See Section 2, where the Padovan sequence is represented as a spiral of cubes (see Comments above). - N. J. A. Sloane, Mar 26 2014
Ulrich Brenner, Anna Hermann and Jannik Silvanus, Constructing Depth-Optimum Circuits for Adders and AND-OR Paths, arXiv:2012.05550 [cs.DM], 2020.
D. J. Broadhurst and D. Kreimer, Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops, Phys. Lett B., Vol. 393, No. 3-4 (1997), pp. 403-412. UTA-PHYS-96-44; arXiv preprint, arXiv:hep-th/9609128, 1996. Table 1 K_n.
Francis Brown, On the decomposition of motivic multiple zeta values, arXiv:1102.1310 [math.NT], 2011.
Minerva Catral, Pari L. Ford, Pamela E. Harris, Steven J. Miller and Dawn Nelson, Legal Decompositions Arising from Non-positive Linear Recurrences, arXiv preprint arXiv:1606.09312 [math.CO], 2016. [Note that there is a 2017 paper in the Fib. Quart. with the same title but with seven authors - see References above. -N. J. A. Sloane, Dec 24 2021]
Frédéric Chapoton, Multiple T-values with one parameter, arXiv:2108.08534 [math.NT], 2021. See p. 5.
Phyllis Chinn and Silvia Heubach, Integer Sequences Related to Compositions without 2's, J. Integer Seqs., Vol. 6 (2003), Article 03.2.3.
Moshe Cohen, The Jones polynomials of 3-bridge knots via Chebyshev knots and billiard table diagrams, arXiv preprint arXiv:1409.6614 [math.GT], 2014.
Mahadi Ddamulira, On the x-coordinates of Pell equations which are sums of two Padovan numbers, arXiv:1905.11322 [math.NT], 2019.
Mahadi Ddamulira, Padovan numbers that are concatenations of two repdigits, arXiv:2003.10705 [math.NT], 2020.
Mahadi Ddamulira, On the x-coordinates of Pell equations that are products of two Padovan numbers, Integers: Electronic Journal of Combinatorial Number Theory, State University of West Georgia, Charles University, and DIMATIA (2020), hal-02471858.
Mahadi Ddamulira, Padovan numbers that are concatenations of two distinct repdigits, arXiv:2003.10705 [math.NT], 2020.
Mahadi Ddamulira, Padovan numbers that are concatenations of two distinct repdigits, Cambridge Open Engage (2020), preprint.
Tomislav Doslic and I. Zubac, Counting maximal matchings in linear polymers, Ars Mathematica Contemporanea, Vol. 11 (2016), pp. 255-276.
James East, Jitender Kumar, James D. Mitchell and Wilf A. Wilson, Maximal subsemigroups of finite transformation and partition monoids, arXiv:1706.04967 [math.GR], 2017. [From James Mitchell and Wilf A. Wilson, Jul 21 2017]
Aysel Erey, Zachary Gershkoff, Amanda Lohss and Ranjan Rohatgi, Characterization and enumeration of 3-regular permutation graphs, arXiv:1709.06979 [math.CO], 2017.
Reinhardt Euler, The Fibonacci Number of a Grid Graph and a New Class of Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.6.
Reinhardt Euler, Paweł Oleksik and Zdzisław Skupien, Counting Maximal Distance-Independent Sets in Grid Graphs, Discussiones Mathematicae Graph Theory, Vol. 33, No. 3 (2013), pp. 531-557, ISSN (Print) 2083-5892.
Sergio Falcón, Binomial Transform of the Generalized k-Fibonacci Numbers, Communications in Mathematics and Applications, Vol. 10, No. 3 (2019), pp. 643-651.
Steven Finch, Cantor-solus and Cantor-multus distributions, arXiv:2003.09458 [math.CO], 2020.
Philippe Flajolet and Bruno Salvy, Euler Sums and Contour Integral Representations, Experimental Mathematics, Vol. 7, No. 1 (1998), pp. 15-35.
Juan B. Gil, Michael D. Weiner and Catalin Zara, Complete Padovan sequences in finite fields, arXiv:math/0605348 [math.NT], 2006.
Juan B. Gil, Michael D. Weiner and Catalin Zara, Complete Padovan sequences in finite fields, The Fibonacci Quarterly, Vol. 45, No. 1 (Feb 2007), pp. 64-75.
N. Gogin and A. Mylläri, Padovan-like sequences and Bell polynomials, Proceedings of Applications of Computer Algebra ACA, 2013.
Taras Goy, Some families of identities for Padovan numbers, Proc. Jangjeon Math. Soc., Vol. 21, No. 3 (2018), pp. 413-419.
Taras Goy and Mark Shattuck, Determinant Identities for Toeplitz-Hessenberg Matrices with Tribonacci Number Entries, arXiv:2003.10660 [math.CO], 2020.
T. M. Green, Recurrent sequences and Pascal's triangle, Math. Mag., Vol. 41, No. 1 (1968), pp. 13-21.
Tony Grubman and Ian M. Wanless, Growth rate of canonical and minimal group embeddings of spherical latin trades, Journal of Combinatorial Theory, Series A, 2014, 57-72.
Richard K. Guy, Anyone for Twopins?, in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15. [Annotated scanned copy, with permission]
Rachel Wells Hall, Math for Poets and Drummers, Math Horizons, Vol. 15, No. 3 (2008), pp. 10-24; preprint; Wayback Machine link.
Michael E. Hoffman, Quasi-symmetric functions and mod p multiple harmonic sums, Kyushu Journal of Mathematics, Vol. 69, No. 2 (2015), pp. 345-366.
Svenja Huntemann and Neil A. McKay, Counting Domineering Positions, arXiv:1909.12419 [math.CO], 2019.
Aleksandar Ilić, Sandi Klavžar, and Yoomi Rho, Parity index of binary words and powers of prime words, The electronic journal of combinatorics, Vol. 19, No. 3 (2012), #P44. - N. J. A. Sloane, Sep 27 2012
Milan Janjic, Recurrence Relations and Determinants, arXiv preprint arXiv:1112.2466 [math.CO], 2011.
Milan Janjic, Determinants and Recurrence Sequences, Journal of Integer Sequences, Vol. 15 (2012), Article 12.3.5.
Milan Janjić, Words and Linear Recurrences, J. Int. Seq., Vol. 21 (2018), Article 18.1.4.
Dov Jarden, Recurring Sequences, Riveon Lematematika, Jerusalem, 1966. [Annotated scanned copy] See p. 90.
Virginia Johnson and C. K. Cook, Areas of Triangles and other Polygons with Vertices from Various Sequences, arXiv preprint arXiv:1608.02420 [math.CO], 2016.
Vedran Krcadinac, A new generalization of the golden ratio, Fibonacci Quart., Vol. 44, No. 4 (2006), pp. 335-340.
Ana Cecilia García Lomelí and Santos Hernández Hernández, Repdigits as Sums of Two Padovan Numbers, J. Int. Seq., Vol. 22 (2019), Article 19.2.3.
J. M. Luck and A. Mehta, Universality in survivor distributions: Characterising the winners of competitive dynamics, arXiv preprint arXiv:1511.04340 [q-bio.QM], 2015.
R. J. Mathar, Paving Rectangular Regions with Rectangular Tiles: Tatami and Non-Tatami Tilings, arXiv:1311.6135 [math.CO], 2013, see Table 49.
Steven J. Miller and Alexandra Newlon, The Fibonacci Quilt Game, arXiv preprint arXiv:1909.01938 [math.NT], 2019. Also Fib. Q., Vol. 58, No. 2 (2020), pp. 157-168. (See Fig. 2, The "Fibonacci Quilt" sequence.)
Ryan Mullen, On Determining Paint by Numbers Puzzles with Nonunique Solutions, JIS, Vol. 12 (2009), Article 09.6.5.
Mariana Nagy, Simon R. Cowell and Valeriu Beiu, Survey of Cubic Fibonacci Identities - When Cuboids Carry Weight, arXiv:1902.05944 [math.HO], 2019.
Richard Padovan, Dom Hans Van Der Laan And The Plastic Number, pp. 181-193 in Nexus IV: Architecture and Mathematics, eds. Kim Williams and Jose Francisco Rodrigues, Fucecchio (Florence): Kim Williams Books, 2002.
Richard Padovan, Dom Hans van der Laan and the Plastic Number, Chapter 74, pp. 407-419, Volume II of K. Williams and M. J. Ostwald (eds.), Architecture and Mathematics from Antiquity to the Future, DOI 10.1007/978-3-319-00143-2_27, Springer International Publishing Switzerland, 2015.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
Salah Eddine Rihane, Chèfiath Awero Adegbindin and Alain Togbé, Fermat Padovan And Perrin Numbers, J. Int. Seq., Vol. 23 (2020), Article 20.6.2.
Shingo Saito, Tatsushi Tanaka and Noriko Wakabayashi, Combinatorial Remarks on the Cyclic Sum Formula for Multiple Zeta Values, J. Int. Seq., Vol. 14 (2011), Article 11.2.4, Conjecture 2.
Ian Stewart, Tales of a Neglected Number, Mathematical Recreations, Scientific American, Vol. 274, No. 6 (1996), pp. 102-103.
Michel Waldschmidt, Lectures on Multiple Zeta Values (IMSC 2011).
Eric Weisstein's World of Mathematics, Maximal Clique.
Eric Weisstein's World of Mathematics, Maximal Independent Vertex Set.
Eric Weisstein's World of Mathematics, Minimal Edge Cover.
Eric Weisstein's World of Mathematics, Minimal Vertex Cover.
Eric Weisstein's World of Mathematics, Padovan Sequence.
Eric Weisstein's World of Mathematics, Pan Graph.
Eric Weisstein's World of Mathematics, Path Complement Graph.
Eric Weisstein's World of Mathematics, Path Graph.
Iwona Włoch, Urszula Bednarz, Dorota Bród, Andrzej Włoch and Małgorzata Wołowiec-Musiał, On a new type of distance Fibonacci numbers, Discrete Applied Math., Vol. 161, No. 16-17 (November 2013) pp. 2695-2701.
Richard Yanco and Ansuman Bagchi, K-th order maximal independent sets in path and cycle graphs, Unpublished manuscript, 1994. (Annotated scanned copy)
Diyar O. Mustafa Zangana and Ahmet Öteleş, Padovan Numbers by the Permanents of a Certain Complex Pentadiagonal Matrix, J. of Garmian Univ., Vol. 5, No. 2 (2018), pp. 330-338.
Sergey Zlobin, A note on arithmetic properties of multiple zeta values, arXiv:math/0601151 [math.NT], 2006.
FORMULA
G.f.: (1-x^2)/(1-x^2-x^3).
a(n) is asymptotic to r^n / (2*r+3) where r = 1.3247179572447... = A060006, the real root of x^3 = x + 1. - Philippe Deléham, Jan 13 2004
a(n)^2 + a(n+2)^2 + a(n+6)^2 = a(n+1)^2 + a(n+3)^2 + a(n+4)^2 + a(n+5)^2 (Barniville, Question 16884, Ed. Times 1911).
a(n+5) = a(0) + a(1) + ... + a(n).
a(n) = central and lower right terms in the (n-3)-th power of the 3 X 3 matrix M = [0 1 0 / 0 0 1 / 1 1 0]. E.g., a(13) = 7. M^10 = [3 5 4 / 4 7 5 / 5 9 7]. - Gary W. Adamson, Feb 01 2004
G.f.: 1/(1 - x^3 - x^5 - x^7 - x^9 - ...). - Jon Perry, Jul 04 2004
a(n+4) = Sum_{k=0..floor((n-1)/2)} binomial(floor((n+k-2)/3), k). - Paul Barry, Jul 06 2004
a(n+3) = Sum_{k=0..floor(n/2)} binomial(k, n-2k). - Paul Barry, Sep 17 2004, corrected by Greg Dresden and Zi Ye, Jul 06 2021
a(n+3) is diagonal sum of A026729 (as a number triangle), with formula a(n+3) = Sum_{k=0..floor(n/2)} Sum_{i=0..n-k} (-1)^(n-k+i)*binomial(n-k, i)*binomial(i+k, i-k). - Paul Barry, Sep 23 2004
a(n) = a(n-1) + a(n-5) = A003520(n-4) + A003520(n-13) = A003520(n-3) - A003520(n-9). - Henry Bottomley, Jan 30 2005
a(n+3) = Sum_{k=0..floor(n/2)} binomial((n-k)/2, k)(1+(-1)^(n-k))/2. - Paul Barry, Sep 09 2005
The sequence 1/(1-x^2-x^3) (a(n+3)) is given by the diagonal sums of the Riordan array (1/(1-x^3), x/(1-x^3)). The row sums are A000930. - Paul Barry, Feb 25 2005
a(n) = A023434(n-7) + 1 for n >= 7. - David Callan, Jul 14 2006
a(n+5) corresponds to the diagonal sums of A030528. The binomial transform of a(n+5) is A052921. a(n+5) = Sum_{k=0..floor(n/2)} Sum_{k=0..n} (-1)^(n-k+i)*binomial(n-k, i)binomial(i+k+1, 2k+1). - Paul Barry, Jun 21 2004
r^(n-1) = (1/r)*a(n) + r*(n+1) + a(n+2), where r = 1.32471... is the real root of x^3 - x - 1 = 0. Example: r^8 = (1/r)*a(9) + r*a(10) + a(11) = (1/r)*2 + r*3 + 4 = 9.483909... - Gary W. Adamson, Oct 22 2006
a(n) = (r^n)/(2r+3) + (s^n)/(2s+3) + (t^n)/(2t+3) where r, s, t are the three roots of x^3-x-1. - Keith Schneider (schneidk(AT)email.unc.edu), Sep 07 2007
a(n) = -k*a(n-1) + a(n-2) + (k+1)a(n-2) + k*a(n-4), n > 3, for any value of k. - Gary Detlefs, Sep 13 2010
From Francesco Daddi, Aug 04 2011: (Start)
a(0) + a(2) + a(4) + a(6) + ... + a(2*n) = a(2*n+3).
a(0) + a(3) + a(6) + a(9) + ... + a(3*n) = a(3*n+2)+1.
a(0) + a(5) + a(10) + a(15) + ... + a(5*n) = a(5*n+1)+1.
a(0) + a(7) + a(14) + a(21) + ... + a(7*n) = (a(7*n) + a(7*n+1) + 1)/2. (End)
a(n+3) = Sum_{k=0..floor((n+1)/2)} binomial((n+k)/3,k), where binomial((n+k)/3,k)=0 for noninteger (n+k)/3. - Nikita Gogin, Dec 07 2012
a(n) = A182097(n-3) for n > 2. - Jonathan Sondow, Mar 14 2014
a(n) = the k-th difference of a(n+5k) - a(n+5k-1), k>=1. For example, a(10)=3 => a(15)-a(14) => 2nd difference of a(20)-a(19) => 3rd difference of a(25)-a(24)... - Bob Selcoe, Mar 18 2014
Construct the power matrix T(n,j) = [A^*j]*[S^*(j-1)] where A=(0,0,1,0,1,0,1,...) and S=(0,1,0,0,...) or A063524. [* is convolution operation] Define S^*0=I with I=(1,0,0,...). Then a(n) = Sum_{j=1...n} T(n,j). - David Neil McGrath, Dec 19 2014
If x=a(n), y=a(n+1), z=a(n+2), then x^3 + 2*y*x^2 - z^2*x - 3*y*z*x + y^2*x + y^3 - y^2*z + z^3 = 1. - Alexander Samokrutov, Jul 20 2015
For the sequence shifted by 6 terms, a(n) = Sum_{k=ceiling(n/3)..ceiling(n/2)} binomial(k+1,3*k-n) [Doslic-Zubac]. - N. J. A. Sloane, Apr 23 2017
From Joseph M. Shunia, Jan 21 2020: (Start)
a(2n) = 2*a(n-1)*a(n) + a(n)^2 + a(n+1)^2, for n > 8.
a(2n-1) = 2*a(n)*a(n+1) + a(n-1)^2, for n > 8.
a(2n+1) = 2*a(n+1)*a(n+2) + a(n)^2, for n > 7. (End)
0*a(0) + 1*a(1) + 2*a(2) + ... + n*a(n) = n*a(n+5) - a(n+9) + 2. - Greg Dresden and Zi Ye, Jul 02 2021
From Greg Dresden and Zi Ye, Jul 06 2021: (Start)
2*a(n) = a(n+2) + a(n-5) for n >= 5.
3*a(n) = a(n+4) - a(n-9) for n >= 9.
4*a(n) = a(n+5) - a(n-9) for n >= 9. (End)
EXAMPLE
G.f. = 1 + x^3 + x^5 + x^6 + x^7 + 2*x^8 + 2*x^9 + 3*x^10 + 4*x^11 + ...
MAPLE
A000931 := proc(n) option remember; if n = 0 then 1 elif n <= 2 then 0 else procname(n-2)+procname(n-3); fi; end;
A000931:=-(1+z)/(-1+z^2+z^3); # Simon Plouffe in his 1992 dissertation; gives sequence without five leading terms
a[0]:=1; a[1]:=0; a[2]:=0; for n from 3 to 50 do a[n]:=a[n-2]+a[n-3]; end do; # Francesco Daddi, Aug 04 2011
MATHEMATICA
CoefficientList[Series[(1-x^2)/(1-x^2-x^3), {x, 0, 50}], x]
a[0]=1; a[1]=a[2]=0; a[n_]:= a[n]= a[n-2] + a[n-3]; Table[a[n], {n, 0, 50}] (* Robert G. Wilson v, May 04 2006 *)
LinearRecurrence[{0, 1, 1}, {1, 0, 0}, 50] (* Harvey P. Dale, Jan 10 2012 *)
Table[RootSum[-1 -# +#^3 &, 5#^n -6#^(n+1) +4#^(n+2) &]/23, {n, 0, 50}] (* Eric W. Weisstein, Nov 09 2017 *)
PROG
(Haskell)
a000931 n = a000931_list !! n
a000931_list = 1 : 0 : 0 : zipWith (+) a000931_list (tail a000931_list)
-- Reinhard Zumkeller, Feb 10 2011
(PARI) Vec((1-x^2)/(1-x^2-x^3) + O(x^50)) \\ Charles R Greathouse IV, Feb 11 2011
(PARI) {a(n) = if( n<0, polcoeff(1/(1+x-x^3) + x * O(x^-n), -n), polcoeff( (1 - x^2)/(1-x^2-x^3) + x * O(x^n), n))}; /* Michael Somos, Sep 18 2012 */
(Magma) I:=[1, 0, 0]; [n le 3 select I[n] else Self(n-2) + Self(n-3): n in [1..60]]; // Vincenzo Librandi, Jul 21 2015
(Sage)
def A000931_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-x^2)/(1-x^2-x^3) ).list()
A000931_list(50) # G. C. Greubel, Dec 30 2019
(GAP) a:=[1, 0, 0];; for n in [4..50] do a[n]:=a[n-2]+a[n-3]; od; a; # G. C. Greubel, Dec 30 2019
(Python)
def aupton(nn):
alst = [1, 0, 0]
for n in range(3, nn+1): alst.append(alst[n-2]+alst[n-3])
return alst
print(aupton(49)) # Michael S. Branicky, Mar 28 2022
CROSSREFS
The following are basically all variants of the same sequence: A000931, A078027, A096231, A124745, A133034, A134816, A164001, A182097, A228361 and probably A020720. However, each one has its own special features and deserves its own entry.
Closely related to A001608.
Doubling every term gives A291289.
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Edited by Charles R Greathouse IV, Mar 17 2010
Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021
STATUS
approved
A001608 Perrin sequence (or Ondrej Such sequence): a(n) = a(n-2) + a(n-3) with a(0) = 3, a(1) = 0, a(2) = 2.
(Formerly M0429 N0163)
+10
73
3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39, 51, 68, 90, 119, 158, 209, 277, 367, 486, 644, 853, 1130, 1497, 1983, 2627, 3480, 4610, 6107, 8090, 10717, 14197, 18807, 24914, 33004, 43721, 57918, 76725, 101639, 134643, 178364, 236282, 313007 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
Has been called the skiponacci sequence or skiponacci numbers. - N. J. A. Sloane, May 24 2013
For n >= 3, also the numbers of maximal independent vertex sets, maximal matchings, minimal edge covers, and minimal vertex covers in the n-cycle graph C_n. - Eric W. Weisstein, Mar 30 2017 and Aug 03 2017
With the terms indexed as shown, has property that p prime => p divides a(p). The smallest composite n such that n divides a(n) is 521^2. For quotients a(p)/p, where p is prime, see A014981.
Asymptotically, a(n) ~ r^n, with r=1.3247179572447... the inverse of the real root of 1-x^2-x^3=0 (see A060006). If n>9 then a(n)=round(r^n). - Ralf Stephan, Dec 13 2002
The recursion can be used to compute a(-n). The result is -A078712(n). - T. D. Noe, Oct 10 2006
For n>=3, a(n) is the number of maximal independent sets in a cycle of order n. - Vincent Vatter, Oct 24 2006
Pisano period lengths are given in A104217. - R. J. Mathar, Aug 10 2012
From Roman Witula, Feb 01 2013: (Start)
Let r1, r2 and r3 denote the roots of x^3 - x - 1. Then the following identity holds: a(k*n) + (a(k))^n - (a(k) - r1^k)^n - (a(k) - r2^k)^n - (a(k) - r3^k)^n
= 0 for n = 0, 1, 2,
= 6 for n = 3,
= 12*a(k) for n = 4,
= 10*[2*(a(k))^2 - a(-k)] for n = 5,
= 30*a(k)*[(a(k))^2 - a(-k)] for n = 6,
= 7*[6*(a(k))^4 - 9*a(-k)*(a(k))^2 + 2*(a(-k))^2 - a(k)] for n = 7,
= 56*a(k)*[((a(k))^2 - a(-k))^2 - a(k)/2] for n = 8,
where a(-k) = -A078712(k) and the formula (5.40) from the paper of Witula and Slota is used. (End)
The parity sequence of a(n) is periodic with period 7 and has the form (1,0,0,1,0,1,1). Hence we get that a(n) and a(2*n) are congruent modulo 2. Similarly we deduce that a(n) and a(3*n) are congruent modulo 3. Is it true that a(n) and a(p*n) are congruent modulo p for every prime p? - Roman Witula, Feb 09 2013
The trinomial x^3 - x - 1 divides the polynomial x^(3*n) - a(n)*x^(2*n) + ((a(n)^2 - a(2*n))/2)*x^n - 1 for every n>=1. For example, for n=3 we obtain the factorization x^9 - 3*x^6 + 2*x^3 - 1 = (x^3 - x - 1)*(x^6 + x^4 - 2*x^3 + x^2 - x + 1). Sketch of the proof: Let p,s,t be roots of the Perrin polynomial x^3 - x - 1. Then we have (a(n))^2 = (p^n + s^n + t^n)^2 = a(2*n) + 2*a(n)*x^n -2*x^n + 2/x^n for every x = p,s,t, i.e., x^(3*n) - a(n)*x^(2*n) + ((a(n)^2 - a(2*n))/2)*x^n - 1 = 0 for every x = p,s,t, which finishes the proof. By discussion of the power(a(n))^3 = (p^n + s^n + t^n)^3 it can be deduced that the trinomial x^3 - x - 1 divides the polynomial 2*x^(4*n) - a(n)*x^(3*n) - a(2*n)*x^(2*n) + ((a(n)^3 - a(3*n) - 3)/3)*x^n - a(n) = 0. Co-author of these divisibility relations is also my young student Szymon Gorczyca (13 years old as of 2013). - Roman Witula, Feb 09 2013
The sum of powers of the real root and complex roots of x^3-x-1=0 as expressed as powers of the plastic number r, (see A060006). Let r0=1, r1=r, r2=1+r^(-1) and c0=2, c1=-r and c3 = r^(-5) then a(n) = r(n-2)+r(n-3) + c(n-2)+c(n-3). Example: a(5) = 1 + r^(-1) + 1 + r + 2 - r + r^(-5) = 4 + r^(-1) + r^(-5) = 5. - Richard Turk, Jul 14 2016
Also the number of minimal total dominating sets in the n-sun graph. - Eric W. Weisstein, Apr 27 2018
Named after the French engineer François Olivier Raoul Perrin (1841-1910). - Amiram Eldar, Jun 05 2021
a(p) = p*A127687(p) for p prime. - Robert FERREOL, Apr 09 2024
REFERENCES
Olivier Bordellès, Thèmes d'Arithmétique, Ellipses, 2006, Exercice 4.11, p. 127.0
Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.2.
Dmitry Fomin, On the properties of a certain recursive sequence, Mathematics and Informatics Quarterly, Vol. 3 (1993), pp. 50-53.
Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 70.
Manfred Schroeder, Number Theory in Science and Communication, 3rd ed., Springer, 1997.
A. G. Shannon, P. G. Anderson and A. F. Horadam, Properties of Cordonnier, Perrin and Van der Laan numbers, International Journal of Mathematical Education in Science and Technology, Volume 37:7 (2006), 825-831. See Q_n.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Indranil Ghosh, Table of n, a(n) for n = 0..8172 (terms 0..1000 from T. D. Noe)
William Adams and Daniel Shanks, Strong primality tests that are not sufficient, Math. Comp., Vol. 39, No. 159 (1982), pp. 255-300.
Kouèssi Norbert Adédji, Japhet Odjoumani, and Alain Togbé, Padovan and Perrin numbers as products of two generalized Lucas numbers, Archivum Mathematicum, Vol. 59 (2023), No. 4, 315-337.
Bill Amend, "Foxtrot" cartoon, Oct 11, 2005 (Illustration of initial terms! From www.ucomics.com/foxtrot/.)
Herbert Batte, Taboka P. Chalebgwa and Mahadi Ddamulira, Perrin numbers that are concatenations of two distinct repdigits, arXiv:2105.08515 [math.NT], 2021.
Daniel Birmajer, Juan B. Gil and Michael D. Weiner, Linear recurrence sequences with indices in arithmetic progression and their sums, arXiv:1505.06339 [math.NT], 2015.
Eric Fernando Bravo, On concatenations of Padovan and Perrin numbers, Math. Commun. (2023) Vol 28, 105-119.
Kevin S. Brown, Perrin's Sequence
J. Chick, Problem 81G, Math. Gazette, Vol. 81, No. 491 (1997), p. 304.
Tomislav Doslic and I. Zubac, Counting maximal matchings in linear polymers, Ars Mathematica Contemporanea, Vol. 11 (2016), pp. 255-276.
Robert Dougherty-Bliss, The Meta-C-finite Ansatz, arXiv preprint arXiv:2206.14852 [math.CO], 2022.
Robert Dougherty-Bliss, Experimental Methods in Number Theory and Combinatorics, Ph. D. Dissertation, Rutgers Univ. (2024). See p. 34.
Robert Dougherty-Bliss and Doron Zeilberger, Lots and Lots of Perrin-Type Primality Tests and Their Pseudo-Primes, arXiv:2307.16069 [math.NT], 2023.
E. B. Escott, Problem 151, Amer. Math. Monthly, Vol. 15, No. 11 (1908), p. 209.
Daniel C. Fielder, Special integer sequences controlled by three parameters, Fibonacci Quarterly, Vol. 6 (1968), pp. 64-70.
Daniel C. Fielder, Errata:Special integer sequences controlled by three parameters, Fibonacci Quarterly, Vol. 6 (1968), pp. 64-70.
Zoltán Furedi, The number of maximal independent sets in connected graphs, J. Graph Theory, Vol. 11, No. 4 (1987), pp. 463-470.
A. Justin Gopinath and B. Nithya, Mathematical and Simulation Analysis of Contention Resolution Mechanism for IEEE 802.11 ah Networks, Computer Communications (2018) Vol. 124, 87-100.
Christian Holzbaur, Perrin pseudoprimes [Original link broke many years ago. This is a cached copy from the WayBack machine, dated Apr 24 2006]
Dmitry I. Ignatov, On the Maximal Independence Polynomial of the Covering Graph of the Hypercube up to n = 6, Int'l Conf. Formal Concept Analysis, 2023.
Stanislav Jakubec and Karol Nemoga, On a conjecture concerning sequences of the third order, Mathematica Slovaca, Vol. 36, No. 1 (1986), pp. 85-89.
Dov Jarden, Recurring Sequences, Riveon Lematematika, Jerusalem, 1966. [Annotated scanned copy] See p. 90.
Bir Kafle, Salah Eddine Rihane and Alain Togbé, A note on Mersenne Padovan and Perrin numbers, Notes on Num. Theory and Disc. Math., Vol. 27, No. 1 (2021), pp. 161-170.
Vedran Krcadinac, A new generalization of the golden ratio, Fibonacci Quart., Vol. 44, No. 4 (2006), pp. 335-340.
G. C. Kurtz, Daniel Shanks and H. C. Williams, Fast primality tests for numbers less than 50*10^9", Mathematics of Computation, Vol. 46, No. 174 (1986), pp. 691-701. [Studies primes in this sequence. - N. J. A. Sloane, Jul 28 2019]
I. E. Leonard and A. C. F. Liu, A familiar recurrence occurs again, Amer. Math. Monthly, Vol. 119, No. 4 (2012), 333-336.
J. M. Luck and A. Mehta, Universality in survivor distributions: Characterising the winners of competitive dynamics, Physical Review E, Vol. 92, No. 5 (2015), 052810; arXiv preprint, arXiv:1511.04340 [q-bio.QM], 2015.
Matthew Macauley, Jon McCammond and Henning S. Mortveit, Dynamics groups of asynchronous cellular automata, Journal of Algebraic Combinatorics, Vol 33, No 1 (2011), pp. 11-35.
Gregory Minton, Three approaches to a sequence problem, Math. Mag., Vol. 84, No. 1 (2011), pp. 33-37.
Gregory T. Minton, Linear recurrence sequences satisfying congruence conditions, Proc. Amer. Math. Soc., Vol. 142, No. 7 (2014), pp. 2337-2352. MR3195758.
B. H. Neumann and L. G. Wilson, Some Sequences like Fibonacci's, Fibonacci Quart., Vol. 17, No. 1 (1979), p. 83.
Mathilde Noual, Dynamics of Circuits and Intersecting Circuits, in Language and Automata Theory and Applications, Lecture Notes in Computer Science, 2012, Volume 7183/2012, 433-444, DOI; also on arXiv, arXiv 1011.3930 [cs.DM], 2010.
Ahmet Öteleş, Bipartite Graphs Associated with Pell, Mersenne and Perrin Numbers, An. Şt. Univ. Ovidius Constantą, (2019) Vol. 27, Issue 2, 109-120.
R. Perrin, Query 1484, L'Intermédiaire des Mathématiciens, Vol. 6 (1899), p. 76.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
Salah Eddine Rihane, Chèfiath Awero Adegbindin and Alain Togbé, Fermat Padovan And Perrin Numbers, J. Int. Seq., Vol. 23 (2020), Article 20.6.2.
Salah Eddine Rihane and Alain Togbé, Repdigits as products of consecutive Padovan or Perrin numbers, Arab. J. Math. (2021).
David E. Rush, Degree n Relatives of the Golden Ratio and Resultants of the Corresponding Polynomials, Fibonacci Quart., Vol. 50, No. 4 (2012), pp. 313-325. See p. 318.
J. O. Shallit and J. P. Yamron, On linear recurrences and divisibility by primes, Fibonacci Quart., Vol. 22, No. 4 (1984), p. 366.
Ian Stewart, Tales of a Neglected Number, Mathematical Recreations, Scientific American, Vol. 274, No. 6 (1996), pp. 102-103.
Ondrej Such, An Insufficient Condition for Primality, Problem 10268, Amer. Math. Monthly, Vol. 102, No. 6 (1995), pp. 557-558.
Ondrej Such, An Insufficient Condition for Primality, Problem 10268, Amer. Math. Monthly, Vol. 103, No. 10 (1996), p. 911.
Pagdame Tiebekabe and Kouèssi Norbert Adédji, On Padovan or Perrin numbers as products of three repdigits in base delta, 2023.
Razvan Tudoran, Problem 653, College Math. J., Vol. 31, No. 3 (2000), pp. 223-224.
Vincent Vatter, Social distancing, primes, and Perrin numbers, Math Horiz., Vol. 29, No. 1, pp. 5-7.
Stan Wagon, Letter to the Editor, Math. Mag., Vol. 84, No. 2 (2011), p. 119.
Michel Waldschmidt, Lectures on Multiple Zeta Values, IMSC 2011.
Eric Weisstein's World of Mathematics, Cycle Graph
Eric Weisstein's World of Mathematics, Maximal Independent Edge Set
Eric Weisstein's World of Mathematics, Maximal Independent Vertex Set
Eric Weisstein's World of Mathematics, Minimal Edge Cover.
Eric Weisstein's World of Mathematics, Minimal Vertex Cover
Eric Weisstein's World of Mathematics, Perrin Pseudoprime
Eric Weisstein's World of Mathematics, Perrin Sequence
Eric Weisstein's World of Mathematics, Sun Graph
Eric Weisstein's World of Mathematics, Total Dominating Set
Willem's Fibonacci site, Perrin and Fibonacci.
Wikipedia, Perrin Number.
Richard Yanco and Ansuman Bagchi, K-th order maximal independent sets in path and cycle graphs, Unpublished manuscript, 1994. (Annotated scanned copy)
Fatih Yilmaz and Durmus Bozkurt, Hessenberg matrices and the Pell and Perrin numbers, Journal of Number Theory, Volume 131, Issue 8 (August 2011), pp. 1390-1396. [The terms given in the paper contain a typo]
FORMULA
G.f.: (3 - x^2)/(1 - x^2 - x^3). - Simon Plouffe in his 1992 dissertation
a(n) = r1^n + r2^n + r3^n where r1, r2, r3 are three roots of x^3-x-1=0.
a(n-1) + a(n) + a(n+1) = a(n+4), a(n) - a(n-1) = a(n-5). - Jon Perry, Jun 05 2003
From Gary W. Adamson, Feb 01 2004: (Start)
a(n) = trace(M^n) where M is the 3 X 3 matrix [0 1 0 / 0 0 1 / 1 1 0], the companion matrix of the characteristic polynomial of this sequence, P = X^3 - X - 1.
M^n * [3, 0, 2] = [a(n), a(n+1), a(n+2)]; e.g., M^7 * [3, 0, 2] = [7, 10, 12].
a(n) = 2*A000931(n+3) + A000931(n). (End)
a(n) = 3*p(n) - p(n-2) = 2*p(n) + p(n-3), with p(n) := A000931(n+3), n >= 0. - Wolfdieter Lang, Jun 21 2010
From Francesco Daddi, Aug 03 2011: (Start)
a(0) + a(1) + a(2) + ... + a(n) = a(n+5) - 2.
a(0) + a(2) + a(4) + ... + a(2*n) = a(2*n+3).
a(1) + a(3) + a(5) + ... + a(2*n+1) = a(2*n+4) - 2. (End)
From Francesco Daddi, Aug 04 2011: (Start)
a(0) + a(3) + a(6) + a(9) + ... + a(3*n) = a(3*n+2) + 1.
a(0) + a(5) + a(10) + a(15) + ... + a(5*n) = a(5*n+1)+3.
a(0) + a(7) + a(14) + a(21) + ... + a(7*n) = (a(7*n) + a(7*n+1) + 3)/2. (End)
a(n) = n*Sum_{k=1..floor(n/2)} binomial(k,n-2*k)/k, n > 0, a(0)=3. - Vladimir Kruchinin, Oct 21 2011
(a(n)^3)/2 + a(3n) - 3*a(n)*a(2n)/2 - 3 = 0. - Richard Turk, Apr 26 2017
2*a(4n) - 2*a(n) - 2*a(n)*a(3n) - a(2n)^2 + a(n)^2*a(2n) = 0. - Richard Turk, May 02 2017
a(n)^4 + 6*a(4n) - 4*a(3n)*a(n) - 3*a(2n)^2 - 12a(n) = 0. - Richard Turk, May 02 2017
a(n+5)^2 + a(n+1)^2 - a(n)^2 = a(2*(n+5)) + a(2*(n+1)) - a(2*n). - Aleksander Bosek, Mar 04 2019
From Aleksander Bosek, Mar 18 2019: (Start)
a(n+12) = a(n) + 2*a(n+4) + a(n+11);
a(n+16) = a(n) + 4*a(n+9) + a(n+13);
a(n+18) = a(n) + 2*a(n+6) + 5*a(n+12);
a(n+21) = a(n) + 2*a(n+12) + 6*a(n+14);
a(n+27) = a(n) + 3*a(n+9) + 4*a(n+22). (End)
a(n) = Sum_{j=0..floor((n-g)/(2*g))} 2*n/(n-2*(g-2)*j-(g-2)) * Hypergeometric2F1([-(n-2g*j-g)/2, -(2j+1)], [1], 1), g = 3 and n an odd integer. - Richard Turk, Oct 14 2019
EXAMPLE
From Roman Witula, Feb 01 2013: (Start)
We note that if a + b + c = 0 then:
1) a^3 + b^3 + c^3 = 3*a*b*c,
2) a^4 + b^4 + c^4 = 2*((a^2 + b^2 + c^2)/2)^2,
3) (a^5 + b^5 + c^5)/5 = (a^3 + b^3 + c^3)/3 * (a^2 +
b^2 + c^2)/2,
4) (a^7 + b^7 + c^7)/7 = (a^5 + b^5 + c^5)/5 * (a^2 + b^2 + c^2)/2 = 2*(a^3 + b^3 + c^3)/3 * (a^4 + b^4 + c^4)/4,
5) (a^7 + b^7 + c^7)/7 * (a^3 + b^3 + c^3)/3 = ((a^5 + b^5 + c^5)/5)^2.
Hence, by the Binet formula for a(n) we obtain the relations: a(3) = 3, a(4) = 2*(a(2)/2)^2 = 2, a(5)/5 = a(3)/3 * a(2)/2, i.e., a(5) = 5, and similarly that a(7) = 7. (End)
MAPLE
A001608 :=proc(n) option remember; if n=0 then 3 elif n=1 then 0 elif n=2 then 2 else procname(n-2)+procname(n-3); fi; end proc;
[seq(A001608(n), n=0..50)]; # N. J. A. Sloane, May 24 2013
MATHEMATICA
LinearRecurrence[{0, 1, 1}, {3, 0, 2}, 50] (* Harvey P. Dale, Jun 26 2011 *)
per = Solve[x^3 - x - 1 == 0, x]; f[n_] := Floor @ Re[N[ per[[1, -1, -1]]^n + per[[2, -1, -1]]^n + per[[3, -1, -1]]^n]]; Array[f, 46, 0] (* Robert G. Wilson v, Jun 29 2010 *)
a[n_] := n*Sum[Binomial[k, n-2*k]/k, {k, 1, n/2}]; a[0]=3; Table[a[n] , {n, 0, 45}] (* Jean-François Alcover, Oct 04 2012, after Vladimir Kruchinin *)
CoefficientList[Series[(3 - x^2)/(1 - x^2 - x^3), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 03 2015 *)
Table[RootSum[-1 - # + #^3 &, #^n &], {n, 0, 20}] (* Eric W. Weisstein, Mar 30 2017 *)
RootSum[-1 - # + #^3 &, #^Range[0, 20] &] (* Eric W. Weisstein, Dec 30 2017 *)
PROG
(PARI) a(n)=if(n<0, 0, polsym(x^3-x-1, n)[n+1])
(PARI) A001608_list(n) = polsym(x^3-x-1, n) \\ Joerg Arndt, Mar 10 2019
(Haskell)
a001608 n = a000931_list !! n
a001608_list = 3 : 0 : 2 : zipWith (+) a001608_list (tail a001608_list)
-- Reinhard Zumkeller, Feb 10 2011
(Python)
A001608_list, a, b, c = [3, 0, 2], 3, 0, 2
for _ in range(100):
a, b, c = b, c, a+b
A001608_list.append(c) # Chai Wah Wu, Jan 27 2015
(GAP) a:=[3, 0, 2];; for n in [4..20] do a[n]:=a[n-2]+a[n-3]; od; a; # Muniru A Asiru, Jul 12 2018
(Magma) I:=[3, 0, 2]; [n le 3 select I[n] else Self(n-2) +Self(n-3): n in [1..50]]; // G. C. Greubel, Mar 18 2019
(Sage) ((3-x^2)/(1-x^2-x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Mar 18 2019
CROSSREFS
Closely related to A182097.
Cf. A000931, bisection A109377.
Cf. A013998 (Unrestricted Perrin pseudoprimes).
Cf. A018187 (Restricted Perrin pseudoprimes).
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Additional comments from Mike Baker, Oct 11 2005
Definition edited by Chai Wah Wu, Jan 27 2015
Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021
STATUS
approved
A095263 a(n+3) = 3*a(n+2) - 2*a(n+1) + a(n). +10
28
1, 3, 7, 16, 37, 86, 200, 465, 1081, 2513, 5842, 13581, 31572, 73396, 170625, 396655, 922111, 2143648, 4983377, 11584946, 26931732, 62608681, 145547525, 338356945, 786584466, 1828587033, 4250949112, 9882257736, 22973462017, 53406819691 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
a(n+1) = number of n-tuples over {0,1,2} without consecutive digits. For the general case see A096261.
Diagonal sums of Riordan array (1/(1-x)^3, x/(1-x^3)), A127893. - Paul Barry, Jan 07 2008
The signed variant (-1)^(n+1)*a(n+1) is the bottom right entry of the n-th power of the matrix [[0,1,0],[0,0,1],[-1,-2,-3]]. - Roger L. Bagula, Jul 01 2007
a(n) is the number of generalized compositions of n+1 when there are i^2/2-i/2 different types of i, (i=1,2,...). - Milan Janjic, Sep 24 2010
Dedrickson (Section 4.1) gives a bijection between colored compositions of n, where each part k has one of binomial(k,2) colors, and 0,1,2 strings of length n-2 without sequential digits (i.e., avoiding 01 and 12). Cf. A052529. - Peter Bala, Sep 17 2013
Except for the initial 0, this is the p-INVERT of (1,1,1,1,1,...) for p(S) = 1 - S^2 - S^3; see A291000. - Clark Kimberling, Aug 24 2017
For n>1, a(n-1) is the number of ways to split [n] into an unspecified number of intervals and then choose 2 blocks (i.e., subintervals) from each interval. For example, for n=6, a(5)=37 since the number of ways to split [6] into intervals and then select 2 blocks from each interval is C(6,2) + C(4,2)*C(2,2) + C(3,2)*C(3,2) + C(2,2)*C(4,2) + C(2,2)*C(2,2)*C(2,2). - Enrique Navarrete, May 20 2022
LINKS
C. R. Dedrickson III, Compositions, Bijections, and Enumerations Thesis, Jack N. Averitt College of Graduate Studies, Georgia Southern University, 2012.
FORMULA
Let M = the 3 X 3 matrix [0 1 0 / 0 0 1 / 1 -2 3]; then M^n *[1 0 0] = [a(n-2) a(n-1) a(n)].
a(n)/a(n-1) tends to 2.3247179572..., an eigenvalue of M and a root of the characteristic polynomial. [Is that constant equal to 1 + A060006? - Michel Marcus, Oct 11 2014] [Yes, the limit is the root of the equation -1 + 2*x - 3*x^2 + x^3 = 0, after substitution x = y + 1 we have the equation for y: -1 - y + y^3 = 0, y = A060006. - Vaclav Kotesovec, Jan 27 2015]
Related to the Padovan sequence A000931 as follows : a(n)=A000931(3n+4). Also the binomial transform of A000931(n+4).
From Paul Barry, Jul 06 2004: (Start)
a(n) = Sum_{k=0..floor((n+1)/2)} binomial(n+k, n-2*k+1).
a(n) = Sum_{k=0..floor((n+1)/2)} binomial(n+k, 3*k-1). (End)
From Paul Barry, Jan 07 2008: (Start)
G.f.: x/(1 -3*x +2*x^2 -x^3).
a(n) = Sum_{k=0..floor(n/2)} binomial(n+k+2,3*k+2).
a(n) = Sum_{k=0..n} binomial(n,k) * Sum_{j=0..floor((k+4)/2)} binomial(j,k-2j+4). (End)
If p[i]=i(i-1)/2 and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=2, a(n-1)=det A. - Milan Janjic, May 02 2010
a(n) = A000931(3*n + 4). - Michael Somos, Sep 18 2012
EXAMPLE
a(9) = 1081 = 3*465 - 2*200 + 86.
M^9 * [1 0 0] = [a(7) a(8) a(9)] = [200 465 1081].
G.f. = x + 3*x^2 + 7*x^3 + 16*x^4 + 37*x^5 + 86*x^6 + 200*x^7 + ...
MAPLE
A:= gfun:-rectoproc({a(n+3)=3*a(n+2)-2*a(n+1)+a(n), a(1)=1, a(2)=3, a(3)=7}, a(n), remember):
seq(A(n), n=1..100); # Robert Israel, Sep 15 2014
MATHEMATICA
a[1]=1; a[2]=3; a[3]=7; a[n_]:= a[n]= 3a[n-1] -2a[n-2] +a[n-3]; Table[a[n], {n, 22}] (* Or *)
a[n_]:= (MatrixPower[{{0, 1, 2, 3}, {1, 2, 3, 0}, {2, 3, 0, 1}, {3, 0, 1, 2}}, n].{{1}, {0}, {0}, {0}})[[2, 1]]; Table[ a[n], {n, 22}] (* Robert G. Wilson v, Jun 16 2004 *)
RecurrenceTable[{a[1]==1, a[2]==3, a[3]==7, a[n+3]==3a[n+2]-2a[n+1]+a[n]}, a, {n, 30}] (* Harvey P. Dale, Sep 17 2022 *)
PROG
(Magma) I:=[1, 3, 7]; [n le 3 select I[n] else 3*Self(n-1) -2*Self(n-2) +Self(n-3): n in [1..30]]; // G. C. Greubel, Apr 12 2021
(Sage) [sum( binomial(n+k+1, 3*k+2) for k in (0..(n-1)//2)) for n in (1..30)] # G. C. Greubel, Apr 12 2021
CROSSREFS
Cf. A052921 (first differences), A137229 (partial sums).
Column k=3 of A277666.
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, May 31 2004
EXTENSIONS
Edited by Paul Barry, Jul 06 2004
Corrected and extended by Robert G. Wilson v, Jun 05 2004
STATUS
approved
A075778 Decimal expansion of the real root of x^3 + x^2 - 1. +10
24
7, 5, 4, 8, 7, 7, 6, 6, 6, 2, 4, 6, 6, 9, 2, 7, 6, 0, 0, 4, 9, 5, 0, 8, 8, 9, 6, 3, 5, 8, 5, 2, 8, 6, 9, 1, 8, 9, 4, 6, 0, 6, 6, 1, 7, 7, 7, 2, 7, 9, 3, 1, 4, 3, 9, 8, 9, 2, 8, 3, 9, 7, 0, 6, 4, 6, 0, 8, 0, 6, 5, 5, 1, 2, 8, 0, 8, 1, 0, 9, 0, 7, 3, 8, 2, 2, 7, 0, 9, 2, 8, 4, 2, 2, 5, 0, 3, 0, 3, 6, 4, 8, 3, 7, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
Also decimal expansion of the root of x^(1/sqrt(x+1)) = (1/sqrt(x+1))^x. The root of (1/x)^(1/sqrt(x+1)) = (1/sqrt(x+1))^(1/x) is the golden ratio. - Michel Lagneau, Apr 17 2012
The following decomposition holds true: X^3 + X^2 - 1 = (X - r)*(X + i * e^(-i*a) * r^(-1/2))*(X - i * e^(i*a) * r^(-1/2)), where a = arcsin(1/(2*r^(3/2))), see A218197 for the decimal expansion of a and the paper of Witula et al. for details. - Roman Witula, Oct 22 2012
REFERENCES
Roman Witula, E. Hetmaniok, D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, submitted to Proceedings of the 15th International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012.
LINKS
H. R. P. Ferguson, On a Generalization of the Fibonacci Numbers Useful in Memory Allocation Schema or All About the Zeroes of Z^k - Z^{k - 1} - 1, k > 0, Fibonacci Quarterly, Volume 14, Number 3, October, 1976 (see Table 2 p. 238).
FORMULA
Let 0 < a < 1 be any real number. Then a is the lesser and 1 is the greater and a^2/1 = 1/(a+1) and a^3 + a^2 - 1 = 0. Solving this using PARI we have 0.7548776662466927600495088964... . The general cubic can also be solved in radicals.
Equals -(1/3) + (1/3)*(25/2 - (3*sqrt(69))/2)^(1/3) + (1/3)*((1/2)*(25 + 3*sqrt(69)))^(1/3).
EXAMPLE
0.7548776662466927600495088963585286918946066...
MAPLE
A075778 := proc()
1/3-root[3](25/2-3*sqrt(69)/2)/3 -root[3](25/2+3*sqrt(69)/2)/3;
-% ;
end proc: # R. J. Mathar, Jan 22 2013
MATHEMATICA
RealDigits[N[Solve[x^3 + x^2 - 1 == 0, x] [[1]] [[1, 2]], 111]] [[1]]
RealDigits[x /. FindRoot[x^3 + x^2 == 1, {x, 1}, WorkingPrecision -> 120]][[1]] (* Harvey P. Dale, Nov 23 2012 *)
PROG
(PARI) solve(x=0, 1, x^3+x^2-1)
(PARI) polrootsreal(x^3 + x^2 - 1)[1] \\ Charles R Greathouse IV, Jul 23 2020
CROSSREFS
Cf. A060006 (inverse), A210462, A210463.
KEYWORD
nonn,cons
AUTHOR
Cino Hilliard, Oct 09 2002
EXTENSIONS
More terms from Robert G. Wilson v, Oct 10 2002
STATUS
approved
A092526 Decimal expansion of (2/3)*cos( (1/3)*arccos(29/2) ) + 1/3, the real root of x^3 - x^2 - 1. +10
24
1, 4, 6, 5, 5, 7, 1, 2, 3, 1, 8, 7, 6, 7, 6, 8, 0, 2, 6, 6, 5, 6, 7, 3, 1, 2, 2, 5, 2, 1, 9, 9, 3, 9, 1, 0, 8, 0, 2, 5, 5, 7, 7, 5, 6, 8, 4, 7, 2, 2, 8, 5, 7, 0, 1, 6, 4, 3, 1, 8, 3, 1, 1, 1, 2, 4, 9, 2, 6, 2, 9, 9, 6, 6, 8, 5, 0, 1, 7, 8, 4, 0, 4, 7, 8, 1, 2, 5, 8, 0, 1, 1, 9, 4, 9, 0, 9, 2, 7, 0, 0, 6, 4, 3, 8 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
This is the limit x of the ratio N(n+1)/N(n) for n -> infinity of the Narayana sequence N(n) = A000930(n). The real root of x^3 - x^2 - 1. See the formula section. - Wolfdieter Lang, Apr 24 2015
This is the fourth smallest Pisot number. - Iain Fox, Oct 13 2017
Sometimes called the supergolden ratio or Narayana's cows constant, and denoted by the symbol psi. - Ed Pegg Jr, Feb 01 2019
REFERENCES
S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.3.
Paul J. Nahin, The Logician and the Engineer, How George Boole and Claude Shannon Created the Information Age, Princeton University Press, Princeton and Oxford, 2013, Chap. 7: Some Combinational Logic Examples, Section 7.1: Channel Capacity, Shannon's Theorem, and Error-Detection Theory, page 120.
LINKS
Simon Baker, Exceptional digit frequencies and expansions in non-integer bases, arXiv:1711.10397 [math.DS], 2017. See the beta(2) constant pp. 3-4.
H. R. P. Ferguson, On a Generalization of the Fibonacci Numbers Useful in Memory Allocation Schema or All About the Zeroes of Z^k - Z^{k - 1} - 1, k > 0, Fibonacci Quarterly, Volume 14, Number 3, October, 1976 (see Table 2, p. 238).
Michael Penn, What is the super-golden ratio??, YouTube video, 2022.
Wikipedia, Pisot number
FORMULA
The real root of x^3 - x^2 - 1. - Franklin T. Adams-Watters, Oct 12 2006
The only real irrational root of x^4-x^2-x-1 (-1 is also a root). [Nahim]
Equals (2/3)*cos( (1/3)*arccos(29/2) ) + 1/3.
Equals 1 + A088559.
Equals (1/6)*(116+12*sqrt(93))^(1/3) + 2/(3*(116+12*sqrt(93))^(1/3)) + 1/3. - Vaclav Kotesovec, Dec 18 2014
Equals 1/A263719. - Alois P. Heinz, Apr 15 2018
Equals (1 + 1/r + r)/3 where r = ((29 + sqrt(837))/2)^(1/3). - Peter Luschny, Apr 04 2020
Equals (1/3)*(1 + ((1/2)*(29 + (3*sqrt(93))))^(1/3) + ((1/2)*(29 - 3*sqrt(93)))^(1/3)). See A075778. - Wolfdieter Lang, Aug 17 2022
EXAMPLE
1.46557123187676802665673122521993910802557756847228570164318311124926...
MATHEMATICA
RealDigits[(2 Cos[ ArcCos[ 29/2]/3] + 1)/3, 10, 111][[1]] (* Robert G. Wilson v, Apr 12 2004 *)
RealDigits[ Solve[ x^3 - x^2 - 1 == 0, x][[1, 1, 2]], 10, 111][[1]] (* Robert G. Wilson v, Oct 10 2013 *)
PROG
(PARI) allocatemem(932245000); default(realprecision, 20080); x=solve(x=1, 2, x^3 - x^2 - 1); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b092526.txt", n, " ", d)); \\ Harry J. Smith, Jun 21 2009
CROSSREFS
Other Pisot numbers: A060006, A086106, A228777, A293506, A293508, A293509, A293557.
KEYWORD
nonn,cons,easy
AUTHOR
N. J. A. Sloane, Apr 07 2004
STATUS
approved
A086106 Decimal expansion of positive root of x^4 - x^3 - 1 = 0. +10
17
1, 3, 8, 0, 2, 7, 7, 5, 6, 9, 0, 9, 7, 6, 1, 4, 1, 1, 5, 6, 7, 3, 3, 0, 1, 6, 9, 1, 8, 2, 2, 7, 3, 1, 8, 7, 7, 8, 1, 6, 6, 2, 6, 7, 0, 1, 5, 5, 8, 7, 6, 3, 0, 2, 5, 4, 1, 1, 7, 7, 1, 3, 3, 1, 2, 1, 1, 2, 4, 9, 5, 7, 4, 1, 1, 8, 6, 4, 1, 5, 2, 6, 1, 8, 7, 8, 6, 4, 5, 6, 8, 2, 4, 9, 0, 3, 5, 5, 0, 9, 3, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Also the growth constant of the Fibonacci 3-numbers A003269 [Stakhov et al.]. - R. J. Mathar, Nov 05 2008
LINKS
Simon Baker, Exceptional digit frequencies and expansions in non-integer bases, arXiv:1711.10397 [math.DS], 2017. See the beta(3) constant pp. 3-4.
A. Stakhov and B. Rozin, Theory of Binet formulas for Fibonacci and Lucas p-numbers, Chaos, Solit. Fractals 27 (2006), 1162-1177.
Eric Weisstein's World of Mathematics, Pisot-Vijayaraghavan Constant
FORMULA
Equals (1 + (A^2 + sqrt(A^4 - 16*u*A^2 + 2*A))/A)/4 with A = sqrt(8*u + 3/2), u = (-(Bp/2)^(1/3) + (Bm/2)^(1/3)*(1 - sqrt(3)*i)/2 - 3/8)/6, with Bp = 27 + 3*sqrt(3*283), Bm = 27 - 3*sqrt(3*283), and i = sqrt(-1). (Standard computation of a quartic.) The other (negative) real root -A230151 is obtained by using in the first formula the negative square root. The other two complex roots are obtained by replacing A by -A in these two formulas. - Wolfdieter Lang, Aug 19 2022
EXAMPLE
1.380277569...
The four solutions are the present one, -A230151, and the two complex ones 0.2194474721... - 0.9144736629...*i and its complex conjugate. - Wolfdieter Lang, Aug 19 2022
MATHEMATICA
RealDigits[Root[ -1 - #1^3 + #1^4 &, 2], 10, 110][[1]]
PROG
(PARI) polrootsreal( x^4-x^3-1)[2] \\ Charles R Greathouse IV, Apr 14 2014
(PARI) default(realprecision, 20080); x=solve(x=1, 2, x^4 - x^3 - 1); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b086106.txt", n, " ", d)); \\ Iain Fox, Oct 23 2017
CROSSREFS
Cf. -A230151 (other real root).
Cf. A060006.
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Jul 09 2003
STATUS
approved
page 1 2 3 4 5 6 7 8

Search completed in 0.051 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 13 05:34 EDT 2024. Contains 375113 sequences. (Running on oeis4.)