(Translated by https://www.hiragana.jp/)
量子生物学 - 维基百科,自由的百科全书 とべ转到内容ないよう

量子りょうし生物せいぶつがく

维基百科ひゃっか自由じゆうてき百科ひゃっかぜん

量子りょうし生物せいぶつがく利用りよう量子りょうしらい研究けんきゅう生命せいめい科学かがく[1]てきいち门学。该学包含ほうがん利用りよう量子力学りょうしりきがく研究けんきゅう生物せいぶつ过程分子ぶんしてき动态结构利用りよう量子りょうし生物せいぶつがく研究けんきゅう量子りょうし水平すいへいてき分子ぶんし动态结构のうりょう转移,如果所得しょとく结果あずかひろし观的生物せいぶつがく现象しょう吻合ふんごう且很难用其他学科がっかてき研究けんきゅうじゅう复,则这一研究结果较为可信[2]

量子りょうし生物せいぶつ化学かがくひかりあい过程てき量子りょうし研究けんきゅうやめいたりょうかく查的重要じゅうようてき结果。ゆう其是ひかり合作がっさくようなか,对于俘获光子こうしきさき发生てきぶんてき、对质子てき量子りょうししき释放,利用りよう量子りょうし生物せいぶつがくてき论,やめ获得显著てき研究けんきゅう进展(あい关理论涉及到较为复杂てきひかりけい统II)。此外,实验论的发现支持しじ酶促はんちゅう包含ほうがん量子りょうし穿ほじつくえせいはたのうりょう转化为化がくのう可用かよう于化がく转化)てき生物せいぶつがく过程ざい实质うえ量子力学りょうしりきがく过程。这些过程包含ほうがん化学かがくはんひかり俘获电子げき发态てき形成けいせいげき发能てき转移化学かがく过程(如光合作がっさくよう细胞呼吸こきゅうちゅう电子及质离子てき转移[3]量子りょうし生物せいぶつがく量子力学りょうしりきがくこう应为すえじょ数学すうがく计算,对生物せいぶつがく相互そうご作用さよう进行[4]奧地おくち出生しゅっしょうてき量子りょうし物理ぶつりがく数理すうり生物せいぶつがくほこり尔温·薛定谔はやざい1946ねん提出ていしゅつりょうよう量子りょうし研究けんきゅう遗传けいてき需求,生物せいぶつがくいえ罗伯とく·罗森ざい1961ねん接着せっちゃく给出りょういち份详细、正式せいしきてき研究けんきゅう量子りょうし遗传がくてき办法。ざい方面ほうめんてき一个仍未解决的存在争议的问题是:量子りょうしこうざい生物せいぶつけいなかてき平凡へいぼん/通用つうようかくしょくそく受限于分子ぶんしせい质)究竟くっきょう什么?[5][6][7]しか而,しんきん关于转录てき研究けんきゅうあずか转录酶对于あいそう链DNAてき量子りょうししんいき处理一致いっちてき[8][9]

研究けんきゅう内容ないよう

[编辑]

あい量子りょうし过程研究けんきゅうてき生物せいぶつがく现象主要しゅよう包括ほうかつ对辐射的しゃてき频率とく异性吸收きゅうしゅう现在こう合作がっさくよう[10]视觉けいひとしない[11]化学かがくのういたつくえ械能てき转化[12]动物てき磁感おう[13]及许おお细胞过程なかてきぬのろう马达[14]。该领いき还在积极研究けんきゅう磁场鸟类导航てき量子りょうし分析ぶんせき[15]可能かのう为许おお生物せいぶつたいてき昼夜ちゅうや节律生理せいり节律てき研究けんきゅう提供ていきょう线索[16]

最近さいきんてき研究けんきゅうやめ经确ていりょうざいひかり合作がっさくようまとこうおさむ获阶だん不同ふどうてき色素しきそてきげき发态间的量子りょうししょうせい纠缠[17][18]つきかん这一阶段的光合作用效率非常高,ただし目前もくぜん仍不清楚せいそ这些量子りょうしこう究竟くっきょう如何いかあるもの生物せいぶつがく上相かみや关的。[19]

まいり

[编辑]

参考さんこう资料

[编辑]
  • W.G. Cooper, "Evidence for transcriptase quantum processing implies entanglement and decoherence of superposition proton states." BioSystems, 97, pp. 73–89, 2009.
  • W.G. Cooper, "Necessity of quantum coherence to account for the spectrum of time-dependent mutations exhibited bacteriophage T4." Biochem. Genet. 47, 892, 2009; doi:10.1007/s10528-009-9293-8.
  • F. H. Thaheld, "An interdisciplinary approach to certain fundamental issues in the fields of physics and biology: towards a unified theory" BioSystems, 80, pp. 41–56, 2005.
  • J. Gilmore and R. H. McKenzie, "Spin boson models for quantum decoherence of electronic excitations of biomolecules and quantum dots in a solvent," Journal of Physics: Condensed Matter, 17(10), pp. 1735–1746, 2005.
  • S. Hameroff and J. Tuszynski, "Quantum states in proteins and protein assemblies: the essence of life?" Proc. SPIE Fluctuations and Noise in Biological, Biophysical, and Biomedical Systems II, Eds. D. Abbott, S.M. Bezrukov, A. Der, and A. Sánchez, 5467, pp. 27–41, Canary Islands, 2004. p
  • P.C.W. Davies, "Does quantum mechanics play a non-trivial role in life?" BioSystems, 78, pp. 69–79, 2004.
  • A. F. Rocha, E. Massad and F. A. B. Coutinho, "Can the human brain do quantum computing?" Medical Hypotheses, 63, pp. 895–899, 2004.
  • A. U. Igamberdiev, "Quantum computation, non-demolition measurements, and reflective control in living systems," BioSystems, 77, pp. 47–56, 2004.
  • S. R. Hameroff, "A new theory of the origin of cancer: quantum coherent entanglement, centrioles, mitosis, and differentiation," BioSystems, 77, pp. 119–136, 2004.
  • Z.-X. Liang and J. P. Klinman, "Structural bases of hydrogen tunneling in enzymes: progress and puzzles," Current Opinion in Structural Biology, 14, pp. 468–655, 2004.
  • P.C.W. Davies, "Emergent biological principles and the computational properties of the universe," Complexity, 10(2), pp. 11–15, 2004.

Cambridge, 1946.

  • C. W. Smith, "Quanta and coherence effects in water and living systems," The Journal of Alternative and Complementary Medicine, 10(1), pp. 69–78, 2004.
  • L. Hackermuller, S. Uttenthaler, K. Hornberger, E. Reiger, B. Brezger, A. Zeilinger, and M. Arndt, "Wave nature of biomolecules and fluorofullerenes," Physical Review Letters, 91(9), 090408, 2003.
  • O. Nariz, M. Arndt, and A. Zeilinger, "Quantum interference experiments with large molecules," American Journal of Physics, 71(4), pp. 319–325, 2003.
  • S. Axelsson, "Perspectives on handedness, life and physics," Medical Hypotheses, 61(2), pp. 267–274, 2003.
  • S. R. Hameroff, A. Nip, M. Porter, and J. Tuszynski, "Conduction pathways in microtubules, biological quantum computation, and consciousness," BioSystems, 64, pp. 146–168, 2002.
  • V. Helms, "Electronic excitations of biomolecules studied by quantum chemistry," Current Opinion in Structural Biology, 12, pp. 169–175, 2002.
  • S. M. Hitchcock, "Photosynthetic quantum computers," arXiv:quant-ph/0108087, 2001.
  • V. Gogonea, D. Suarez, A. van der Vaart and K. M. Merz, "New developments in applying quantum mechanics to proteins," Current Opinion in Structural Biology, 11, pp. 217–223, 2001.
  • M. Kameyama, "Quantum cellular biology: a curious example of a cat," Medical Hypotheses, 57(3), pp. 358–360, 2001.
  • M. Tegmark, "Why the brain is probably not a quantum computer," Information Sciences, 128, pp. 155–179, 2000.
  • K. Matsuno, "Is there a biology of quantum information? ," BioSystems, 55, pp. 39–46, 2000.
  • M. Tegmark, "The importance of quantum decoherence in brain processes," Physical Review E, 61(4), pp. 4194–4206, 2000.
  • H. S. Green, "Measurement and the observer," Chapter 8 in Information Theory and Quantum Physics: Physical Foundations for Understanding the Conscious Process, Springer, pp. 172–209, 2000.
  • E. Bieberich, "Probing quantum coherence in a biological system by means of DNA amplification," BioSystems, 57, pp. 109–124, 2000.
  • A. Kohen and J. Klinman, "Hydrogen tunneling in biology," Chemistry and Biology, 6, pp. R191-R198, 1999.
  • W. J. Meggs, "Biological homing: hypothesis for a quantum effect that leads to the existence of life," Medical Hypotheses, 51, pp. 503–506, 1998.
  • M. Tegmark, "Does the universe in fact contain almost no information?" Foundations of Physics Letters, 9(1), pp. 25–42, 1996.
  • S. Hameroff and R. Penrose, "Orchestrated reduction of quantum coherence in brain microtubules: A model for consciousness," Mathematics and Computers in Simulation, 40, pp. 453–480, 1996.
  • D. V. Nanopoulos, "Theory of brain function, quantum mechanics and superstrings," arXiv: hep-ph/950374, 1995.


ちゅう

[编辑]
  1. ^ Tae-Chang Kim, Eric Chaisson. Science, Education and Future Generations. Taylor & Francis Ltd. 1999: 26. ISBN 978-9057005381. 
  2. ^ Ian Brown, Zengliang Yu, Thiraphat Vilaithong. Introduction to Ion Beam Biotechnology. Springer-Verlag New York Inc. 2005: 97. ISBN 978-0387255316. 
  3. ^ Quantum Biology. University of Illinois at Urbana-Champaign, Theoretical and Computational Biophysics Group. http://www.ks.uiuc.edu/Research/quantum_biology/页面そん档备份そん互联网档あん
  4. ^ http://www.sciencedaily.com/releases/2007/01/070116133617.htm页面そん档备份そん互联网档あん) Science Daily Quantum Biology: Powerful Computer Models Reveal Key Biological Mechanism Retrieved Oct 14, 2007
  5. ^ H.M. Wiseman, J. Eisert Nontrivial quantum effects in biology: A skeptical physicists' view arXiv:0705.1232v2 [physics.gen-ph]
  6. ^ Davies PC.Does quantum mechanics play a non-trivial role in life? Biosystems. 2004 Dec;78(1-3):69-79.
  7. ^ Ogryzko VV. Erwin Schrödinger, Francis Crick and epigenetic stability.Biol Direct. 2008 Apr 17;3:15.[1]页面そん档备份そん互联网档あん[2]页面そん档备份そん互联网档あん
  8. ^ Cooper WG.Evidence for transcriptase quantum processing implies entanglement and decoherence of superposition proton states. BioSystems. 2009 Aug; 97:73-89.doi:10.1016/j.biosystems.2009.04.010
  9. ^ Cooper WG. Necessity of quantum coherence to account for the spectrum of time-dependent mutations exhibited by bacteriophage T4. Biochem. Genet. 2009 Oct; doi:10.1007/s10528-009-9293-8
  10. ^ Quantum Secrets of Photosynthesis Revealed. [2010-07-19]. (原始げんし内容ないようそん于2017-10-22). 
  11. ^ Garab, G. Photosynthesis: Mechanisms and Effects: Proceedings of the XIth International Congress on Photosynthesis. Kluwer Academic Publishers. 1999. ISBN 978-0792355472. 
  12. ^ Levine, Raphael D. Molecular Reaction Dynamics. Cambridge University Press. 2005: 16–18. ISBN 978-0521842761. 
  13. ^ Binhi, Vladimir N. Magnetobiology: Underlying Physical Problems. Academic Press. 2002: 14–16. ISBN 978-0121000714. 
  14. ^ Harald Krug, Harald Brune, Gunter Schmid, Ulrich Simon, Viola Vogel, Daniel Wyrwa, Holger Ernst, Armin Grunwald, Werner Grunwald, Heinrich Hofmann. Nanotechnology: Assessment and Perspectives. Springer-Verlag Berlin and Heidelberg GmbH & Co. K. 2006: 197–240. ISBN 978-3540328193. 
  15. ^ http://rodgers.org.uk/research/页面そん档备份そん互联网档あん) Chris Rodgers, The Spin Chemistry of Bird Navigation 2005
  16. ^ http://www.sciencedaily.com/releases/2007/08/070827174303.htm页面そん档备份そん互联网档あんMath Model For Circadian Rhythm Created, ScienceDaily, August 30, 2007
  17. ^ Sarovar, Mohan; Ishizaki, Akihito; Fleming, Graham R.; Whaley, K. Birgitta. Quantum entanglement in photosynthetic light-harvesting complexes. Nature Physics. 2010, 6 (6): 462–467. Bibcode:2010NatPh...6..462S. arXiv:0905.3787可免费查阅. doi:10.1038/nphys1652. 
  18. ^ Engel GS, Calhoun TR, Read EL, Ahn TK, Mancal T, Cheng YC; et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems.. Nature. 2007, 446 (7137): 782–6 [2014-02-23]. Bibcode:2007Natur.446..782E. PMID 17429397. doi:10.1038/nature05678. (原始げんし内容ないようそん于2017-06-17). 
  19. ^ Scholes GS. Quantum-Coherent Electronic Energy Transfer: Did Nature Think of It First?. Journal of Physical Chemistry Letters. 2010, 1: 2–8. doi:10.1021/jz900062f. 

扩展阅读

[编辑]
  • Atomistic approaches in modern biology : from quantum chemistry to molecular simulations by Markus Reiher; L Bertini. Berlin ; New York : Springer, 2007. ISBN 978-3-540-38082-5
  • Molecular structure and dynamics in biology. by Roman Osman; Guiliano Alagona; Caterina Ghio; International Society for Quantum Biology and Pharmacology.Wiley, 1999. OCLC: 82140679
  • Theoretical chemistry in biology : from molecular structure to functional mechanisms. by Peter Kollman; Harel Weinstein John Wiley and Sons, 1998. OCLC: 80429626

外部がいぶ链接

[编辑]